Math, asked by prabhnoork416, 2 months ago

when we plot the points A(1,4) B (-1,0) C (1,-4)
and D (3,0) the figure .
we had obtained is
a​

Answers

Answered by sirireddykristipati
0

look.at the picture.it may help you

Attachments:
Answered by MrSovereign
2

\Large{\underline{\underline{\bold{✯Given:}}}}

  • Point A = (1,4) →\;{\sf{(X_1,Y_1)}}
  • Point B = (-1,0) →\;{\sf{(X_2,Y_2)}}
  • Point C = (1,-4) →\;{\sf{(X_3,Y_3)}}
  • Point D = (3,0) →\;{\sf{(X_4,Y_4)}}

\Large{\underline{\underline{\red{\bold{➸To\:Find:}}}}}

  • Figure Formed by joining the points.

\Large{\underline{\underline{\blue{\bold{✄Solution:}}}}}

\boxed{\green{\bf{Distance\; between\;two\;points = \sqrt{(X_2-X_1)²+(Y_2-Y_1)²}\;units}}}

AB:-

 \sqrt{ {( - 1 - 1)}^{2}  +  {(0 - 4)}^{2} }  \\  \sqrt{ { (- 2)}^{2}  +  {( - 4)}^{2} }  \\  \sqrt{4 + 16}  \\  \sqrt{20}  \\ 2 \sqrt{5}

BC:-

 \sqrt{ {(1  - ( -  1 ))}^{2} +  {( - 4 - 0)}^{2}  }  \\  \sqrt{( {2})^{2} + {( - 4)}^{2}   }  \\  \sqrt{4 + 16}  \\  \sqrt{20}  \\ 2 \sqrt{5}

CD:-

 \sqrt{ {(3 - 1)}^{2} +  {( - 0 - 4)}^{2}  }  \\  \sqrt{ {(2)}^{2} +  {( - 4)}^{2}  }  \\  \sqrt{4 + 16}  \\  \sqrt{20}  \\ 2 \sqrt{5}

DA:-

 \sqrt{ {(1 - 3)}^{2}  +  {(4 - 0)}^{2} }  \\  \sqrt{ {( - 2)}^{2}  +  {(4)}^{2} }  \\  \sqrt{4 + 16}  \\  \sqrt{20}  \\ 2 \sqrt{5}

AB = BC = CD = DA \sf{2\sqrt{5}}\;units

  • Since All Sides are equal it might be a Square or Rhombus.

AC:-

 \sqrt{ {(1 - 1)}^{2} +  {( - 4 - 4)}^{2}  }  \\  \sqrt{0 +  {( - 8)}^{2} }  \\  \sqrt{64}  \\  \sqrt{ {8}^{2} }  \\ 8

BD:-

 \sqrt{ {( - 1 - 3)}^{2} + {(0 - 0)}^{2}  }  \\  \sqrt{ {( - 4)}^{2} }  \\  \sqrt{16}  \\ 4

AC BD

  • Since, The diagonals are not equal it is a Rhombus

ABCD is a ☞ \Large\sf{\color{salmon}янοмϐυѕ}

\pink{\bf{Refer\;The\; Attachment}}

\Large{\tt{@MrSovereign}}

Hope This Helps!!

Attachments:
Similar questions