When x, y and z are real, the minimum value of (2x2 + 2y2 + 5z2 - 2xy - 4yz - 4zx - 4x - 2z + 15) is
(a) 18
(b) 25
(c) 10
(d) 15
Answers
Answered by
2
Given : 2x² + 2y² + 5z² - 2xy - 4yz - 4x - 2z + 15
To Find : the minimum value
(a) 18
(b) 25
(c) 10
(d) 15
Solution:
2x² + 2y² + 5z² - 2xy - 4yz - 4x - 2z + 15
= x² + x² + y² + y² + (2z)² + z² - 2xy - 4yz - 4x - 2z + 15
= x² - 4x + x² + y² - 2xy + y² + (2z)² - 4yz + z² - 2z + 15
= ( x - 2)² - 4 + ( x - y)² + (y - 2z)² + ( z - 1)² - 1 + 15
= ( x - 2)² + (x - y)² + ( y - 2z)² + ( z - 1)² + 10
x = 2 , y = 2 and z = 1 will give minimum value
= 10
Learn more:
if x+y+z=0 then the square of the value of (x+y)^2/xy+(y+z)^2/yz+(z+x)
brainly.in/question/12858114
Find x,y,z using cramers rule, if x-y+z=4, 2x+y-3z=0 and x+y+z=2
brainly.in/question/9052437
Answered by
2
Given :
To find :
- Minimum value .
Solution :
We know ,
Let,
Hence, the minimum value is 10 .
Similar questions