when you throw a ball in the upward direction which energy is stored in it and on which factors it depend
Answers
Answer:
In classical physics terms, you do work on an object when you exert a force on the object causing it to move some distance. The amount of work you actually do may have little relationship to the amount of effort you apply. For example, if you push on a car stuck in a snow drift, you may exert a lot of force (and effort) but if the car does not budge, you have not done any work! In order for work to be done on an object, the object must move some distance as a result of the force you apply. There are also constraints on the force you apply. Only force exerted in the same direction as the movement of the object result in work. You may think that you do a lot of work if you carry an arm full of books from home to school. In reality you do no work at all! In carrying the stack of books, you exert an upward force to hold the books so they don't fall to the ground. There is no movement associated with this force. As you walk, the motion of the books is horizontal not vertical. Since the force applied to the books is vertical, and the motion is horizontal, you do not do any work on the books.
Work is a transfer of energy so work is done on an object when you transfer energy to that object. The amount of work done on an object depends on the amount of force exerted on the object and the amount of distance the object moves.
Work = Force x Distance
Explanation:
I think this is helpful for you
Answer:
When a ball is thrown upwards, work done by the force is positive work.
Work done against gravity = potential energy gained by the weight
The kinetic energy of the body will be equal to zero as kinetic energy is directly proportional to the square of the velocity. Therefore, when a body is thrown vertically upwards, the kinetic energy becomes zero.