Where the sun's reflection lens formed by the convex lens is subject to the lens?
Answers
You have already learnt that the ability of a lens to converge or diverge
light rays depends on its focal length. For example, a convex lens of
short focal length bends the light rays through large angles, by focussing
them closer to the optical centre. Similarly, concave lens of very short
focal length causes higher divergence than the one with longer focal
length. The degree of convergence or divergence of light rays achieved
by a lens is expressed in terms of its power. The power of a lens is defined
as the reciprocal of its focal length. It is represented by the letter P. The
power P of a lens of focal length f is given by
P = 1
f (10.11)
184 Science
The SI unit of power of a lens is ‘dioptre’. It is denoted by the letter D.
If f is expressed in metres, then, power is expressed in dioptres. Thus,
1 dioptre is the power of a lens whose focal length is 1 metre. 1D = 1m–1.
You may note that the power of a convex lens is positive and that of a
concave lens is negative.
Opticians prescribe corrective lenses indicating their powers. Let us
say the lens prescribed has power equal to + 2.0 D. This means the lens
prescribed is convex. The focal length of the lens is + 0.50 m. Similarly,
a lens of power – 2.5 D has a focal length of – 0.40 m. The lens is concave