Math, asked by sanjay1507, 1 month ago

whether 1/2 and 1 are zeros of the polynomial p(X)=2x²-3x+1 or not? Justify.​

Answers

Answered by kailashmannem
49

 \huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Question:-}}}}}}}

 \bullet{\longmapsto} Whether  \sf \dfrac{1}{2} and 1 are zeros of the polynomial p(x) = 2x² - 3x + 1 or not? Justify.

 \huge {\bf{\orange{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

 \bullet{\leadsto} \: \sf p(x) \: = \: 2x^{2} \: - \: 3x \: + \: 1.

 \bullet{\leadsto} \: \sf Check \: whether \: \dfrac{1}{2} \: and \: 1 \: are \: zeros?

 \bullet{\leadsto} \: \sf So, \: we \: have \: to \: substitute \: given \: values \: in \: p(x).

 \bullet{\leadsto} \: \sf p(x) \: = \: 2x^{2} \: - \: 3x \: + \: 1.

 \bullet{\leadsto} \: \sf Substituting \: x \: = \: \dfrac{1}{2} \: in \: p(x).

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: 2 \: * \: (\dfrac{1}{2})^{2} \: - \: 3 \: * \: \dfrac{1}{2} \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: 2 \: * \: \dfrac{1}{4} \: - \: 3 \: * \: \dfrac{1}{2} \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: \cancel{2} \: * \: \dfrac{1}{\cancel{4}} \: - \: 3 \: * \: \dfrac{1}{2} \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: \dfrac{1}{2} \: - \: 3 \: * \: \dfrac{1}{2} \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: \dfrac{1}{2} \: - \: \dfrac{3}{2} \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: 0.5 \: - \: 1.5 \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: 1 \: + \: 1.

 \bullet{\leadsto} \: \sf p(\dfrac{1}{2}) \: = \: 2.

 \bullet{\leadsto} \: \underline{\boxed{\pink{\sf p(\dfrac{1}{2}) \: = \: 2 \: \neq \: 0.}}}

 \bullet{\leadsto} \: \sf Substituting \: x \: = \: 1 \: in \: p(x).

 \bullet{\leadsto} \: \sf p(1) \: = \: 2 \: * \: 1^{2} \: - \: 3 \: * \: 1 \: + \: 1.

 \bullet{\leadsto} \: \sf p(1) \: = \: 2 \: * \: 1 \: - \: 3 \: + \: 1.

 \bullet{\leadsto} \: \sf p(1) \: = \: 2 \: - \: 3 \: + \: 1.

 \bullet{\leadsto} \: \sf p(1) \: = \: - \: 1 \: + \: 1.

 \bullet{\leadsto} \: \underline{\boxed{\green{\sf p(1) \: = \: 0.}}}

 \huge{\bf{\red{\mathfrak{\dag{\underline{\underline{Conclusion:-}}}}}}}

 \bullet{\longmapsto} \: \boxed{\therefore{\sf Zeros \: of \: polynomial \: p(x) \: = \: 2x^{2} \: - \: 3x \: + \: 1 \: is \: 1 .}}

Answered by abhishek917211
45

p(x) =  {2x}^{2}  - 3x + 1 \\ p( \frac{1}{2} ) = 2( \frac{1}{2}  {)}^{2}  - 3( \frac{1}{2} ) + 1

 \\  = 2 \times (\frac{1}{2}  {)}^{2}  -  \frac{3}{2}  + 1 \\  =  \frac{1}{2}  -  \frac{3 + 1}{2}  \\  =  \frac{ - 2}{2}  + 1 \\  =  - 1 + 1 \\  = 0 \\  \frac{1}{2} is \:  \: a \:  \: zero \:  \: of \:  \: p(x)

Similar questions