Math, asked by rockingmahadev9824, 9 months ago

Which are the roots of the quadratic function f(b) = b ^ 2 - 75 Select two options .

Answers

Answered by Swarup1998
0

Quadratic function: Let x be a variable, then a quadratic function is of the form

\quad\quad f(x)=ax^{2}+bx+c

where a,\:b,\:c\in\mathbb{R} with a\neq 0

Solution:

The given quadratic function is

\quad\quad f(b)=b^{2}-75

To find the roots of this function, we equate f(b) with zero (0)

\Rightarrow f(b)=0

\Rightarrow b^{2}-75=0

\Rightarrow b^{2}=75

\Rightarrow b^{2}=3\times 25

\Rightarrow b^{2}=(\sqrt{3})^{2}\times 5^{2}

\Rightarrow b^{2}=(5\sqrt{3})^{2}

\Rightarrow b=\pm 5\sqrt{3}

Answer: Therefore the roots of the given quadratic function are

\quad\quad\quad b=\pm 5\sqrt{3}.

Similar questions