Math, asked by Ravenception, 1 year ago

Which are the solutions of x2 = 19x + 1? Will give Brainliest!

Answers

Answered by Unknown135
5
that's the answer hope it helps you
Attachments:

achuaiswarya112: Is it a x^2 or 2x????
mohammedraiyanp2alyt: 2x
Ravenception: 19/2 + - the square root of 19/2

19/2 + - the square root of 365/2

-19/2 + - the square root of 19/2

-19/2 + - the square root of 365/2

Which one out of these?
Ravenception: Also, my school wifi blocks pictures, so if you could tell me out of these choices above, I'd appreciate it.
Answered by skyfall63
2

The roots of the given quadratic equation are 19.05 or -0.05  

Step-by-step explanation:

Let,

f(x) = x^2 - 19x -1 = 0

The above equation is the quadratic equation in x.

For a quadratic equation in x say ax^2 + bx + c =0

Divide the whole equation by a

x^{2}+\frac{b x}{a}+\frac{c}{a}=0

To convert the above in the form of (a+b)^2, add and subtract \left(\frac{b}{2 a}\right)^{2}

x^{2}+2 x \frac{b}{2 a}+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}+\frac{c}{a}=0

\left(x+\left(\frac{b}{2 a}\right)\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0

On taking LCM of 4a^2 and a

\left(x+\left(\frac{b}{2 a}\right)\right)^{2}-\frac{b^{2}-4 a c}{4 a^{2}}=0

\left(x+\left(\frac{b}{2 a}\right)\right)^{2}-\left(\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)^{2}=0

As we know that,

\left(a^{2}-b^{2}\right)=(a+b)(a-b)

Therefore,

\left(x+\left(\frac{b}{2 a}\right)-\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)\left(x+\left(\frac{b}{2 a}\right)+\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)=0

There are two values for x here,

x+\left(\frac{b}{2 a}\right)-\frac{\sqrt{b^{2}-4 a c}}{2 a}=0

Or  

x+\left(\frac{b}{2 a}\right)+\frac{\sqrt{b^{2}-4 a c}}{2 a}=0

On bringing x to another side, we get,

x=\left(\left(-\frac{b}{2 a}\right)+\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)

Or

x=\left(\left(-\frac{b}{2 a}\right)-\frac{\sqrt{b^{2}-4 a c}}{2 a}\right)

Thus,

x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

The above implies that \sqrt{b^{2}-4 a c} is the discriminant which is the deciding factor for real, imaginary or equal roots.

If discriminant is = 0, roots are equal

If discriminant is > 0, roots are real

If discriminant is < 0, roots are imaginary

Now, let us consider the given equation f(x) = x^2 - 19x -1 = 0

b^{2}-4 a c=(-19 \times-19)-(4 \times 1 \times(-1))=361+4=365&gt;0

Roots are real

The roots are given as:

x=-b \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}=-(-19) \pm \frac{\sqrt{365}}{2(1)}

=\frac{19 \pm \sqrt{365}}{2}

=\frac{19 \pm 19.10}{2}

=\frac{38.10}{2} \text { or }-\frac{0.10}{2}

x=19.05 \text { or } -0.05

Similar questions