Which average out of mean, median and mode is the best average? Write any three points
in support of your answer
PLEASE ITS VERY URGENT AND NO SPAM PLEASE
I WILL FOLLOW
Answers
Answer:
The term 'average' refers to the ‘middle’ or ‘central’ point. When used in mathematics, the term refers to a number that is a typical representation of a group of numbers (or data set). Averages can be calculated in different ways - this page covers the mean, median and mode. We include an averages calculator, and an explanation and examples of each type of average.
The most widely used method of calculating an average is the ‘mean’. When the term ‘average’ is used in a mathematical sense, it usually refers to the mean, especially when no other information is given.
Quick Guide:
To calculate the Mean
Add the numbers together and divide by the number of numbers.
(The sum of values divided by the number of values).
To determine the Median
Arrange the numbers in order, find the middle number.
(The middle value when the values are ranked).
To determine the Mode
Count how many times each value occurs; the value that occurs most often is the mode.
(The most frequently occurring value)
Mean, Median and Mode Calculator
Use this calculator to work out the mean, median and mode of a set of numbers.
Mean
Mean (x-bar)
The mathematical symbol or notation for mean is ‘x-bar’. This symbol appears on scientific calculators and in mathematical and statistical notations.
The ‘mean’ or ‘arithmetic mean’ is the most commonly used form of average. To calculate the mean, you need a set of related numbers (or data set). At least two numbers are needed in order to calculate the mean.
The numbers need to be linked or related to each other in some way to have any meaningful result – for instance, temperature readings, the price of coffee, the number of days in a month, the number of heartbeats per minute, students’ test grades etc.
To find the (mean) average price of a loaf of bread in the supermarket, for example, first record the price of each type of loaf:
Month Days
January 31
February 28
March 31
April 30
May 31
June 30
July 31
August 31
September 30
October 31
November 30
December 31
Next we add all the numbers together: 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31 = 365
Finally we divide the answer with the number of values in our data set in this case there are 12 (one for each month counted).
So the mean average is 365 ÷ 12 = 30.42.
The average number of days in a month, therefore, is 30.42.
The same calculation can be used to work out the average of any set of numbers, for example the average salary in an organisation:
Answer:
The term ‘average’ occurs frequently in all sorts of everyday contexts. For example, you might say ‘I’m having an average day today’, meaning your day is neither particularly good nor bad, it is about normal. We may also refer to people, objects and other things as ‘average’.
The term 'average' refers to the ‘middle’ or ‘central’ point. When used in mathematics, the term refers to a number that is a typical representation of a group of numbers (or data set). Averages can be calculated in different ways - this page covers the mean, median and mode. We include an averages calculator, and an explanation and examples of each type of average.
The most widely used method of calculating an average is the ‘mean’. When the term ‘average’ is used in a mathematical sense, it usually refers to the mean, especially when no other information is given.