Computer Science, asked by melisacarvalho13, 1 day ago

Which Co-ordinate axis will help to move the sprite in Pictoblox left and right? * ​

Answers

Answered by milk5000milk
0

Answer:

\large\underline{\sf{Solution-}}

Solution−

Given expression is

\begin{gathered}\rm \: {x}^{a} \: {y}^{b} = {(x + y)}^{a + b} \\ \end{gathered}

x

a

y

b

=(x+y)

a+b

On taking log on both sides, we get

\begin{gathered}\rm \: log[{x}^{a} \: {y}^{b} ]= log{(x + y)}^{a + b} \\ \end{gathered}

log[x

a

y

b

]=log(x+y)

a+b

We know,

\begin{gathered}\boxed{\sf{ \:log {x}^{y} = ylogx \: }} \\ \end{gathered}

logx

y

=ylogx

and

\begin{gathered}\boxed{\sf{ \:log(xy) = logx + logy \: }} \\ \end{gathered}

log(xy)=logx+logy

So, using these results, we get

\begin{gathered}\rm \: alogx + blogy = (a + b)log(x + y) \\ \end{gathered}

alogx+blogy=(a+b)log(x+y)

On differentiating both sides w. r. t. x, we get

\begin{gathered}\rm \:\dfrac{d}{dx}\bigg( alogx + blogy\bigg) =\dfrac{d}{dx} (a + b)log(x + y) \\ \end{gathered}

dx

d

(alogx+blogy)=

dx

d

(a+b)log(x+y)

We know,

\begin{gathered}\boxed{\sf{ \:\dfrac{d}{dx}logx = \frac{1}{x} \: }} \\ \end{gathered}

dx

d

logx=

x

1

So, using this result, we get

\begin{gathered}\rm \: \dfrac{a}{x} + \dfrac{b}{y}\dfrac{dy}{dx}=(a + b) \dfrac{1}{x + y}\dfrac{d}{dx}(x + y) \\ \end{gathered}

x

a

+

y

b

dx

dy

=(a+b)

x+y

1

dx

d

(x+y)

\begin{gathered}\rm \: \dfrac{a}{x} + \dfrac{b}{y}\dfrac{dy}{dx}= \dfrac{a + b}{x + y}\bigg[1 + \dfrac{dy}{dx} \bigg] \\ \end{gathered}

x

a

+

y

b

dx

dy

=

x+y

a+b

[1+

dx

dy

]

\begin{gathered}\rm \: \dfrac{a}{x} + \dfrac{b}{y}\dfrac{dy}{dx}= \dfrac{a + b}{x + y} \: +\dfrac{a + b}{x + y} \: \dfrac{dy}{dx} \\ \end{gathered}

x

a

+

y

b

dx

dy

=

x+y

a+b

+

x+y

a+b

dx

dy

\begin{gathered}\rm \: \dfrac{b}{y}\dfrac{dy}{dx} - \dfrac{a + b}{x + y}\dfrac{dy}{dx}= \dfrac{a + b}{x + y} \: - \: \dfrac{a}{x} \\ \end{gathered}

y

b

dx

dy

x+y

a+b

dx

dy

=

x+y

a+b

x

a

\begin{gathered}\rm \: \bigg(\dfrac{b}{y} - \dfrac{a + b}{x + y}\bigg)\dfrac{dy}{dx}= \dfrac{a + b}{x + y} \: - \: \dfrac{a}{x} \\ \end{gathered}

(

y

b

x+y

a+b

)

dx

dy

=

x+y

a+b

x

a

\begin{gathered}\rm \: \bigg(\dfrac{bx + by - ay - by}{y(x + y)} \bigg)\dfrac{dy}{dx}= \dfrac{ax + bx - ax - ay}{x(x + y)} \\ \end{gathered}

(

y(x+y)

bx+by−ay−by

)

dx

dy

=

x(x+y)

ax+bx−ax−ay

\begin{gathered}\rm \: \bigg(\dfrac{bx - ay}{y} \bigg)\dfrac{dy}{dx}= \dfrac{bx - ay}{x} \\ \end{gathered}

(

y

bx−ay

)

dx

dy

=

x

bx−ay

\begin{gathered}\rm \: \bigg(\dfrac{1}{y} \bigg)\dfrac{dy}{dx}= \dfrac{1}{x} \\ \end{gathered}

(

y

1

)

dx

dy

=

x

1

\begin{gathered}\rm \: x\dfrac{dy}{dx} = y \\ \end{gathered}

x

dx

dy

=y

On differentiating w. r. t. x, we get

\begin{gathered}\rm \: \dfrac{d}{dx}\bigg(x\dfrac{dy}{dx}\bigg) = \dfrac{d}{dx}y \\ \end{gathered}

dx

d

(x

dx

dy

)=

dx

d

y

\begin{gathered}\rm \: x\dfrac{d}{dx}\dfrac{dy}{dx} + \dfrac{dy}{dx} \times \dfrac{d}{dx}x = \dfrac{dy}{dx} \\ \end{gathered}

x

dx

d

dx

dy

+

dx

dy

×

dx

d

x=

dx

dy

\begin{gathered}\rm \: x\dfrac{d^{2} y}{d {x}^{2} } + \dfrac{dy}{dx} \times 1 = \dfrac{dy}{dx} \\ \end{gathered}

x

dx

2

d

2

y

+

dx

dy

×1=

dx

dy

\begin{gathered}\rm \: x\dfrac{d^{2} y}{d {x}^{2} } + \dfrac{dy}{dx} = \dfrac{dy}{dx} \\ \end{gathered}

x

dx

2

d

2

y

+

dx

dy

=

dx

dy

\begin{gathered}\rm \: x\dfrac{d^{2} y}{d {x}^{2} } = 0 \\ \end{gathered}

x

dx

2

d

2

y

=0

\begin{gathered}\rm \: \rm\implies \:\dfrac{d^{2} y}{d {x}^{2} } = 0 \\ \end{gathered}

dx

2

d

2

y

=0

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf - \: sinx \\ \\ \sf tanx & \sf {sec}^{2}x \\ \\ \sf cotx & \sf - {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf - \: cosecx \: cotx\\ \\ \sf \sqrt{x} & \sf \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf {e}^{x} & \sf {e}^{x} \end{array}} \\ \end{gathered}\end{gathered}

f(x)

k

sinx

cosx

tanx

cotx

secx

cosecx

x

logx

e

x

dx

d

f(x)

0

cosx

−sinx

sec

2

x

−cosec

2

x

secxtanx

−cosecxcotx

2

x

1

x

1

e

x

Similar questions