Math, asked by amarissa21, 10 months ago

which expression is equivalent to (q^4)^-3/q^-15 for all values of q where the expressions is defined

f q^27
g 1/9^27
h q^3
j 1/9^3

Answers

Answered by jemin01
42

Answer:

(h)q^3

Step-by-step explanation:

now,

(q^4)^-3/q^-15 =q^-12 × q^+15

=q^(-12+15)

=q^3

Answered by pulakmath007
2

\displaystyle \sf{ \frac{ {( {q}^{4} )}^{ - 3} }{ {q}^{ - 15} }   =  {q}^{3}  }

Given :

The expression

\displaystyle \sf{ \frac{ {( {q}^{4} )}^{ - 3} }{ {q}^{ - 15} }   }

To find :

The expression which is equivalent for all values of q where the expressions is defined

\displaystyle \sf{  f. \:  \:  {q}^{27} }

\displaystyle \sf{  g. \:  \:   \frac{1}{{q}^{27}}  }

\displaystyle \sf{ h. \:  {q}^{3}  }

\displaystyle \sf{ i. \:   \frac{1}{{q}^{3}}   }

Formula :

 \displaystyle \sf{1. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{2. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ \frac{ {( {q}^{4} )}^{ - 3} }{ {q}^{ - 15} }   }

Step 2 of 2 :

Simplify the given expression

We use the formulas

 \displaystyle \sf{1. \:  \:  \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n} }

 \displaystyle \sf{2. \:  \:  \:  { ({a}^{m} )}^{n} =  {a}^{mn}  }

Thus the given expression

\displaystyle \sf{= \frac{ {( {q}^{4} )}^{ - 3} }{ {q}^{ - 15} }   }

\displaystyle \sf{ =  \frac{ { {q}^{} }^{ (- 3 \times 4)} }{ {q}^{ - 15} }   }

\displaystyle \sf{ =  \frac{ {q}^{ - 12}  }{ {q}^{ - 15} }   }

\displaystyle \sf{ =  {q}^{ - 12 + 15}  }

\displaystyle \sf{ =  {q}^{ 3}  }

Hence the required option is h. q³

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. choose the correct alternative : 100¹⁰⁰ is equal to (a) 2¹⁰⁰ × 50¹⁰⁰ (b) 2¹⁰⁰ + 50¹⁰⁰ (c) 2² × 50⁵⁰ (d) 2² + 50⁵⁰

https://brainly.in/question/47883149

2. Using law of exponents, simplify (5²)³÷5³

https://brainly.in/question/36250730

Similar questions