Math, asked by alligation1501, 9 months ago

Which expression is equivalent to StartFraction (3 m Superscript negative 2 Baseline n) Superscript negative 3 Baseline Over 6 m n Superscript negative 2 Baseline EndFraction? Assume m not-equals 0, n not-equals 0.
StartFraction m Superscript 5 Baseline Over 162 n EndFraction
StartFraction 1 Over 2 m cubed n EndFraction
StartFraction 8 m Superscript 9 Baseline Over n Superscript 9 Baseline EndFraction
StartFraction 4 m Superscript 8 Baseline Over 3 n cubed EndFraction

Answers

Answered by ashishks1912
3

GIVEN :

The expression is \frac{(3m^{-3}n)^{-3}}{6mn^{-2}}

TO FIND :

The equivalent expression to the given expression.

SOLUTION :

Given that the expression is \frac{(3m^{-3}n)^{-3}}{6mn^{-2}}

Assume m\neq 0, n\neq 0

To find the equivalent expression to the given expression:

Solving the given expression we get,

\frac{(3m^{-2}n)^{-3}}{6mn^{-2}} for m\neq 0, n\neq 0

By using the property of power rule is given by:

(abc)^m=a^mb^mc^m

=\frac{3^{-3}(m^{-2})^{-3}n^{-3}}{6mn^{-2}}

By using the property of power rule is given by:

(a^m)^n=a^{mn}

=\frac{3^{-3}m^6n^{-3}}{6mn^{-2}}

By using the property of Exponent is given by:

a^{-m}=\frac{1}{a^m}

=\frac{m^6}{3^3.6mn^{-2}.n^3}

By using the property of exponent is given by:

a^m.a^n=a^{m+n}

=\frac{m^6.m^{-1}}{3^3.6n^{-2+3}}

By using the property of exponent is given by:

\frac{1}{a^m}=a^{-m}

=\frac{m^{6-1}}{162n^1}

By using the property of exponent is given by:

a^m.a^n=a^{m+n}

=\frac{m^{5}}{162n}

\frac{(3m^{-2}n)^{-3}}{6mn^{-2}}=\frac{m^{5}}{162n} for m\neq 0, n\neq 0

∴  the equivalent expression to the given expression \frac{(3m^{-2}n)^{-3}}{6mn^{-2}} is \frac{m^{5}}{162n} for m\neq 0, n\neq 0

Option A) Start Fraction m Superscript 5 Baseline Over 162 n End Fraction is correct

Answered by ab161001
3

Answer:

A

Step-by-step explanation:

Similar questions