Math, asked by bishantnayak4621, 10 months ago

Which expression is equivalent to StartFraction negative 9 x Superscript negative 1 Baseline y Superscript negative 9 Baseline Over negative 15 x Superscript 5 Baseline y Superscript negative 3 Baseline EndFraction? Assume x not-equals 0, y not-equals 0.
StartFraction 3 Over 5 x Superscript 5 Baseline y cubed EndFraction
StartFraction 3 Over 5 x Superscript 6 Baseline y Superscript 6 Baseline EndFraction
StartFraction 5 Over 3 x Superscript 5 Baseline y cubed EndFraction
StartFraction 5 Over 3 x Superscript 6 Baseline y Superscript 6 Baseline EndFraction

Answers

Answered by ashishks1912
25

GIVEN :

The expression is Start Fraction negative 9 x Superscript negative 1 Baseline y Superscript negative 9 Baseline Over negative 15 x Superscript 5 Baseline y Superscript negative 3 Baseline End Fraction.

TO FIND :

The equivalent expression to the given expression

SOLUTION :

Assume that x\neq 0 and y\neq 0

The given expression can be written as

\frac{-9x^{-1}.y^{-9}}{-15x^5.y^{-3}}

To simplify the given expression as below:

\frac{-9x^{-1}.y^{-9}}{-15x^5.y^{-3}}

=\frac{3x^{-1}.y^{-9}}{5x^5.y^{-3}}

By using the identity:

a^{-m}=\frac{1}{a^m}

=\frac{3}{5x^5.y^{-3}.x^1.y^9}

=\frac{3}{5x^5.x^1.y^{-3}.y^9}

By using the identities:

a^m.a^n=a^{m+n}

a^m.a^{-n}=a^{m-n}

=\frac{3}{5x^{5+1}.y^{-3+9}}

=\frac{3}{5x^6.y^6}

\frac{-9x^{-1}.y^{-9}}{-15x^5.y^{-3}}=\frac{3}{5x^6.y^6} for x\neq 0 and y\neq 0

The equivalent expression to the given expression \frac{-9x^{-1}.y^{-9}}{-15x^5.y^{-3}} is \frac{3}{5x^6.y^6} for x\neq 0 and y\neq 0

∴ option b) Start Fraction 3 Over 5 x Superscript 6 Baseline y Superscript 6 Baseline End Fraction is correct

That is \frac{3}{5x^6.y^6} for x\neq 0 and y\neq 0 is correct.

Answered by VaibhavSR
2

Answer:  \frac{3  }{5x^{6} y^{6}   }

Step-by-step explanation:

  • Given: \frac{-9x^{-1}y^{-9}  }{-15x^{5}y^{-3}  } where x≠0.
  • To find: Simplify and tick the correct option.
  • Solution:

        We know, any number with negative power can be written in inverse form with positive power.

    x^{-a}=\frac{1}{x^{a} }

Two number having same base their powers are added.

x^{a}+x^{b}=x^{a+b}

Now,  \frac{-9x^{-1}y^{-9}  }{-15x^{5}y^{-3}  } =\frac{3x^{-1}y^{-9}  }{5x^{5}y^{-3}  }

                        =\frac{3  }{5x^{5}x^{1} y^{-3}y^{9}   }

                        =\frac{3  }{5x^{6} y^{6}   }

  • Hence, the required answer is  \frac{3  }{5x^{6} y^{6}   }.

#SPJ2

                         

Similar questions