Which function has zeros at x = −2 and x = 5?
f(x) = x2 + 2x − 10
f(x) = x2 − 2x − 10
f(x) = x2 + 3x − 10
f(x) = x2 − 3x − 10
Answers
- At x = -2
f(x) = x² + 2x - 10
= (-2)² + 2(-2) - 10
= 4 - 4 - 10 = -10
f(x) = x² - 2x - 10
= (-2)² - 2(-2) - 10
= 4 + 4 - 10 = 8 - 10 = -2
f(x) = x² + 3x - 10
= (-2)² + 3(-2) - 10
= 4 - 6 - 10 = -2 - 10 = -12
f(x) = x² - 3x - 10
= (-2)² - 3(-2) - 10
= 4 + 6 - 10 = 10 - 10 = 0
At x = 5
f(x) = x² + 2x - 10
= 5² + 2(5) - 10
= 25 + 10 - 10 = 25
f(x) = x² - 2x - 10
= 5² - 2(5) - 10
= 25 - 10 - 10 = 25 - 20 = 5
f(x) = x² + 3x - 10
= 5² + 3(5) - 10
= 25 + 15 - 10 = 40 - 10 = 30
f(x) = x² - 3x - 10
= 5² - 3(5) - 10
= 25 - 15 - 10 = 25 - 25 = 0
Depending upon this solution, f(x) = x² - 3x - 10 has zeros at x = -2 and x = 5
Answer: f(x)=x2-3x-10
Step-by-step explanation:
D on edge.