Math, asked by muzzu3864, 10 months ago

Which is equivalent 64 1/4

Answers

Answered by anjali962
0

Answer:

+2 ( 1 + i ) ; - 2 ( 1 - i )

Step-by-step explanation:

let \: z =  { - 1}^{ \frac{1}{4} } \\  {z}^{4}   =  - 1 \\  {z}^{4}  =  \cos(n\pi)  + i \sin(n\pi)  \\  {z}^{4}  =  {e}^{n\pi}  \\ z =  {e}^{ \frac{n\pi}{4} }  \\ let \: n = 1 \\ z =  {e}^{ \frac{\pi}{4} }  \\ now \:  { - 64}^{ \frac{1}{4} }  \\  =  >  { - 1}^{ \frac{1}{4} } . {64}^{\frac{1}{4} }  \\  =  >  {e}^{ \frac{\pi}{4} } . {26}^{ \frac{1}{4} }  \\  =  >  \frac{1 + i}{ \sqrt{2} } . \sqrt[2]{2 }  = 2(1 + i) \\  { - 64}^{ \frac{1}{4} }  =  - 2(1 + i) \\  =  >  + 2(1 + i) \:  - 2(1 - i)

mark as a brainleast plz

Similar questions