Which is equivalent to RootIndex 4 StartRoot 9 EndRoot Superscript one-half x?
Answers
Answered by
0
ans by aaabanti :
{9}^ {\frac{1}{8}x}9
8
1
x
Step-by-step explanation:
We want to find an equivalent expression for
(\sqrt[4]{9})^{ \frac{1}{2}x}(
4
9
)
2
1
x
To find an equivalent expression, we need to apply the following property of exponents:
{a}^{ \frac{m}{n}}=( \sqrt[n]{ {a}} )^{m}a
n
m
=(
n
a
)
m
We let a=9, n=4 and m=½x
Then :
{9}^{ \frac{ \frac{1}{2}x}{4}}=( \sqrt[4]{ {9}} )^{ \frac{1}{2}x}9
4
2
1
x
=(
4
9
)
2
1
x
Simplify the left hand side to get:
{9}^ {\frac{1}{8}x} =( \sqrt[4]{ {9}} )^{ \frac{1}{2}x}9
8
1
x
=(
4
9
)
2
1
x
Therefore the correct answer is:
{9}^ {\frac{1}{8}x}9
8
1
x
Similar questions