Math, asked by adityathakur1458, 1 month ago

Which is greater?

(i) (2/7) of (3/4) or (3/5) of (5/8)

Answers

Answered by Anonymous
12

Given :

  • \sf \dfrac{2}{7} \ of \ \dfrac{3}{4} \ \ or \ \ \dfrac{3}{5} \ of \ \dfrac{5}{8}

To find :

  • We have to find the greater among the two pairs of fraction

Solution :

\sf \dfrac{2}{7} \ \times \ \dfrac{3}{4} \\ \\ \\  :\implies \sf \sf \dfrac{2 \times 3}{7 \times 4} \leadsto \sf \dfrac{6}{28} \\ \\ \\ :\implies \sf \dfrac{6}{28}  \div  \dfrac{2}{2} \leadsto \dfrac{3}{14}\\ \\ \\ \sf \dfrac{3}{5} \ \times \ \dfrac{5}{8} \\ \\ \\ :\implies \sf \dfrac{3 \times 5}{5 \times 8} \leadsto \dfrac{15}{40} \\ \\ \\ : \implies \sf \dfrac{15}{40} \div \dfrac{5}{5} \leadsto \dfrac{3}{8} \\ \\ \\ \therefore \ \ \sf Now  \ we \ will \ convert \  the \ product \ into \ like \ term \\ \\ \\ \sf The \ LCM \ of \  14 \ and \ 8 \ is \ 56 \\ \\ \\ :\implies \sf  \dfrac{3}{14} \times \dfrac{4}{4} \hookrightarrow \dfrac{12}{56} \\ \\ \\ :\implies \sf  \dfrac{3}{8} \times  \dfrac{7}{7} \hookrightarrow \dfrac{21}{56} \\ \\ \\ :\implies \sf \dfrac{12}{56} \leq  \dfrac{21}{56} \\ \\ \\ :\implies \dfrac{3}{14} \leq \dfrac{3}{8} \\ \\ \\ \sf { Hence, \ verified \ that \ \dfrac{3}{8} \ is \ greater.}

Answered by ItzArmyGirl
3

Answer

3/8 is the greater

Please mark as brainliest

Similar questions