which is greater sqrt17 -sqrt12 or sqrt11-sqrt6
Answers
Answered by
2
Hi ,
It is a very good question ,
i ) sqrt17 - sqrt12
= ( sqrt17 - sqrt12 )/1×(sqrt17+sqrt12)/(sqrt17+sqrt12)
= [ (sqrt17)^2 - (sqrt12)^2 ] / (sqrt17 + sqrt12)
=( 17 - 12 )/( sqrt17 + sqrt12 )
= 5 / ( sqrt17 + sqrt12 ) -------( 1 )
ii ) sqrt11 - sqrt6
= (sqrt11 - sqrt6)/1 × ( sqrt11 + sqrt6 )/( sqrt11 + sqrt6 )
= [ ( sqrt11 )^2 - ( sqrt6)^2 ] / ( sqrt11 + sqrt6 )
= ( 11 - 6 ) / ( sqrt11 + sqrt6 )
= 5 / ( sqrt11 + sqrt6 ) --------( 2 )
We know that ,
(Sqrt17 + sqrt 12 ) > ( sqrt 11 + sqrt 6 )
Therefore,
1/ ( sqrt17 + sqrt12 ) < 1 / ( sqrt 11 + sqrt 6 )
5 / ( sqrt 17 + sqrt 12 ) < 5 / ( sqrt 11 + sqrt 6 )
[ from ( 1 ) and ( 2 ) ]
Therefore ,
We can easily conclude that ,
( sqrt 17 - sqrt 12 ) < ( sqrt 11 - sqrt 6 )
( sqrt 11 - sqrt 6 ) > ( sqrt 17 - sqrt 12 )
( Sqrt 11 - sqrt 6 ) is greater than ( sqrt 17 - sqrt 12 )
I hope this helps you.
****
It is a very good question ,
i ) sqrt17 - sqrt12
= ( sqrt17 - sqrt12 )/1×(sqrt17+sqrt12)/(sqrt17+sqrt12)
= [ (sqrt17)^2 - (sqrt12)^2 ] / (sqrt17 + sqrt12)
=( 17 - 12 )/( sqrt17 + sqrt12 )
= 5 / ( sqrt17 + sqrt12 ) -------( 1 )
ii ) sqrt11 - sqrt6
= (sqrt11 - sqrt6)/1 × ( sqrt11 + sqrt6 )/( sqrt11 + sqrt6 )
= [ ( sqrt11 )^2 - ( sqrt6)^2 ] / ( sqrt11 + sqrt6 )
= ( 11 - 6 ) / ( sqrt11 + sqrt6 )
= 5 / ( sqrt11 + sqrt6 ) --------( 2 )
We know that ,
(Sqrt17 + sqrt 12 ) > ( sqrt 11 + sqrt 6 )
Therefore,
1/ ( sqrt17 + sqrt12 ) < 1 / ( sqrt 11 + sqrt 6 )
5 / ( sqrt 17 + sqrt 12 ) < 5 / ( sqrt 11 + sqrt 6 )
[ from ( 1 ) and ( 2 ) ]
Therefore ,
We can easily conclude that ,
( sqrt 17 - sqrt 12 ) < ( sqrt 11 - sqrt 6 )
( sqrt 11 - sqrt 6 ) > ( sqrt 17 - sqrt 12 )
( Sqrt 11 - sqrt 6 ) is greater than ( sqrt 17 - sqrt 12 )
I hope this helps you.
****
Similar questions