Math, asked by rupamborthakur8241, 1 year ago

Which is greater, tan 1 or tan⁻¹ 1 ?

Answers

Answered by jay7557
0

· 1 rad = 57.3 degree which is bigger than π / 4 = 45 degrees, the value where reaches the value of 1. Which means tan ⁡ 1 > 1 and.

Missing: ⁻ ‎| ‎Must include: ‎⁻

Answered by ᎪɓhᎥⲊhҽᏦ
34

Answer:

We know,

 { \tan}^{ - 1} 1 =  { \tan}^{ - 1}  \bigg( \tan \dfrac{\pi}{4} \bigg) =  \dfrac{\pi}{4}

Here, we need to find which of the two given trigonometric ratios is greater. We will use the fact that the number π/4 is less than the number 1.

so,

 \implies \: 1 >  \dfrac{\pi}{4}

Now

\implies \rm \:  \tan1 > \tan \dfrac{\pi}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

[tan theta is an increasing function]

 \implies \rm \tan1 > 1

 \implies \rm \:  \tan1 > 1 >  \dfrac{ \pi}{4}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg[1 >  \dfrac{\pi}{4} \bigg]

 \implies \rm \tan1 >  \dfrac{\pi}{4}

 \implies \rm \:  \tan1 >  { \tan }^{ - 1} 1 \:  \:  \:  \:  \:  \bigg[ { \tan }^{ - 1}  =  \dfrac{\pi}{4} \bigg]

so, clearly tan 1 is greater than tan⁻¹ 1 . ( Ans)

Inverse Identities

 \longrightarrow \rm \sin( { \sin }^{ - 1} x)  = x \:  \:  \:  \:  \:  \:  \:  \:  x\in [ - 1,1]

 \longrightarrow \rm  \cos ( {  \cos }^{ - 1} x)  = x \:  \:  \:  \:  \:  \:  \:  \:  x\in [ - 1,1]

 \longrightarrow \rm  \tan ( {  \tan  }^{ - 1} x)  = x \:  \:  \:  \:  \:  \:  \:  \:  x\in R

 \longrightarrow \rm  \cot( { \cot }^{ - 1} x)  = x \:  \:  \:  \:  \:  \:  \:  \:  x\in R

 \longrightarrow \rm  \sec ( {  \sec }^{ - 1} x)  = x \:  \:  \:  \:    x\in R - (- 1,1)

 \longrightarrow \rm    \csc( {  \csc }^{ - 1} x)  = x \:  \:  \:  \:    x\in R - (- 1,1)

ᎪɓhᎥⲊhҽᏦ ( Brainly.in)

Thank you :)

Similar questions