Math, asked by NITESH761, 1 day ago

Which is greater?
\rm \large 88^{89} \: \: or \: \: 89^{88}

Answers

Answered by rajupallysudhareddy
0

Answer:

both are equal

Step-by-step explanation:

88

×89=7832.89×88=7832

Answered by user0888
8

\Large\text{Topic: [Mathematical induction]}

Let \large\text{$n=88$}. Then, -

\text{$\cdots\longrightarrow88^{89}=n^{n+1},\ 89^{88}=(n+1)^{n}.$}

\Large\text{[Assertion]}

\large\text{$\cdots\longrightarrow\boxed{n^{1+\frac{1}{n}}>n+1\text{ for any integers }n\geq3.}$}

To prove this, we use mathematical induction.

\Large\text{[Base case]}

The base case for \large\text{$n=3$}.

To prove: \large\text{$3^{1+\frac{1}{3}}>3+1.$}

Dividing by \large\text{$3$}, -

\large\text{$\cdots\longrightarrow3^{\frac{1}{3}}>1+\dfrac{1}{3}.$}

Raising both numbers by 3, -

\text{$\cdots\longrightarrow3>\left(\dfrac{4}{3}\right)^{3}$}

\text{$\cdots\longrightarrow3>\dfrac{64}{27}.\ \text{[True]}$}

This inequation is true. The base case is confirmed.

\Large\text{[Mathematical induction]}

If the inequality is true, we would get -

\text{$\cdots\longrightarrow k^{1+\frac{1}{k}}<k+1\text{ for any integers }k\geq3.$}

Let's put \large\text{$n=k+1$} to prove for all numbers above the base case.

\text{$\cdots\longrightarrow k^{1+\frac{1}{k+1}}<k+2.$}

From the exponents, we can compare numbers.

\large\text{$\cdots\longrightarrow\boxed{k^{1+\frac{1}{k}}>k^{1+\frac{1}{k+1}}\text{ for any natural numbers }k}$}

From this fact, we can derive an inequality.

\text{$\cdots\longrightarrow k^{1+\frac{1}{k+1}}<k^{1+\frac{1}{k}}<k+1<k+2$}

\text{$\cdots\longrightarrow k^{1+\frac{1}{k+1}}<k+2\ \text{[True]}$}

So, by mathematical induction, the given inequality is true for natural numbers \large\text{$n\geq3$} \large\text{$\blacksquare$}

\Large\text{[Theorem]}

\large\text{$\cdots\longrightarrow\boxed{n^{1+\frac{1}{n}}>n+1\text{ for any integers }n\geq3.}$}

Raising \large\text{$n$} on both sides, -

\large\text{$\cdots\longrightarrow\boxed{n^{n+1}>(n+1)^{n}\text{ for any integers }n\geq3.}$}

Hence, we can say that \large\text{$88^{89}>89^{88}.$}

\Large\text{[Final answer]}

Hence, -

\large\text{$\cdots\longrightarrow\boxed{88^{89}>89^{88}.}$}

Similar questions