Math, asked by raisakshi085, 8 months ago

Which is the correct descending order of the following rational numbers : − 2, 4/(- 5) , 11/20 , 3/4 ?

Answers

Answered by varunvbhat26
3

First, make the denominator of all the numbers same and then arrange the numerators in descending order.

-2, \dfrac{4}{-5}, \dfrac{11}{20}, \dfrac{3}{4}

\dfrac{-2}{1}, \dfrac{-4}{5}, \dfrac{11}{20}, \dfrac{3}{4}

LCM = 20

\dfrac{-2 \times 20 }{1\times20}, \dfrac{-4\times4}{5\times4}, \dfrac{11\times1}{20\times1}, \dfrac{3\times5}{4\times5}

\dfrac{-40}{20}, \dfrac{-16}{20}, \dfrac{11}{20}, \dfrac{15}{20}

Since the denominators are same, we can arrange the numbers in descending order according to the numerators.

Descending order -  \dfrac{15}{20}, \dfrac{11}{20}, \dfrac{-16}{20}, \dfrac{-40}{20}

Therefore, the descending order of the original numbers is as follows :-

\dfrac{3}{4}, \dfrac{11}{20}, \dfrac{4}{-5}, -2

Answered by rasmiranichhatoi
1

Step-by-step explanation:

First, make the denominator of all the numbers same and then arrange the numerators in descending order.

-2, \dfrac{4}{-5}, \dfrac{11}{20}, \dfrac{3}{4}−2,

−5

4

,

20

11

,

4

3

\dfrac{-2}{1}, \dfrac{-4}{5}, \dfrac{11}{20}, \dfrac{3}{4}

1

−2

,

5

−4

,

20

11

,

4

3

LCM = 20

\dfrac{-2 \times 20 }{1\times20}, \dfrac{-4\times4}{5\times4}, \dfrac{11\times1}{20\times1}, \dfrac{3\times5}{4\times5}

1×20

−2×20

,

5×4

−4×4

,

20×1

11×1

,

4×5

3×5

\dfrac{-40}{20}, \dfrac{-16}{20}, \dfrac{11}{20}, \dfrac{15}{20}

20

−40

,

20

−16

,

20

11

,

20

15

Since the denominators are same, we can arrange the numbers in descending order according to the numerators.

Descending order - \dfrac{15}{20}, \dfrac{11}{20}, \dfrac{-16}{20}, \dfrac{-40}{20}

20

15

,

20

11

,

20

−16

,

20

−40

Therefore, the descending order of the original numbers is as follows :-

\dfrac{3}{4}, \dfrac{11}{20}, \dfrac{4}{-5}, -2

4

3

,

20

11

,

−5

4

,−2

Similar questions