Chemistry, asked by anzariabdulsalam1, 1 month ago

which is the element having the lowest ionization energy in group 1?​

Answers

Answered by divyanshisharma1008
1

Answer:

cesium

I hope it helps you

Answered by berashyamal564
0

Answer:

Ionization energy is the quantity of energy that an isolated, gaseous atom in the ground electronic state must absorb to discharge an electron, resulting in a cation.

H(g)→H+(g)+e−(1)

This energy is usually expressed in kJ/mol, or the amount of energy it takes for all the atoms in a mole to lose one electron each.

When considering an initially neutral atom, expelling the first electron will require less energy than expelling the second, the second will require less energy than the third, and so on. Each successive electron requires more energy to be released. This is because after the first electron is lost, the overall charge of the atom becomes positive, and the negative forces of the electron will be attracted to the positive charge of the newly formed ion. The more electrons that are lost, the more positive this ion will be, the harder it is to separate the electrons from the atom.

In general, the further away an electron is from the nucleus, the easier it is for it to be expelled. In other words, ionization energy is a function of atomic radius; the larger the radius, the smaller the amount of energy required to remove the electron from the outer most orbital. For example, it would be far easier to take electrons away from the larger element of Ca (Calcium) than it would be from one where the electrons are held tighter to the nucleus, like Cl (Chlorine).

In a chemical reaction, understanding ionization energy is important in order to understand the behavior of whether various atoms make covalent or ionic bonds with each other. For instance, the ionization energy of Sodium (alkali metal) is 496KJ/mol (1) whereas Chlorine's first ionization energy is 1251.1 KJ/mol (2). Due to this difference in their ionization energy, when they chemically combine they make an ionic bond. Elements that reside close to each other in the periodic table or elements that do not have much of a difference in ionization energy make polar covalent or covalent bonds. For example, carbon and oxygen make CO2 (Carbon dioxide) reside close to each other on a periodic table; they, therefore, form a covalent bond. Carbon and chlorine make CCl4 (Carbon tetrachloride) another molecule that is covalently bonded.

Similar questions