which is the largest factor of 500 less 200
Answers
Answered by
19
ASSUMED KNOWLEDGE
Experience with the four operations of arithmetic.
Instant recall of the multiplication table up to 12 × 12.
Fractions and multiplication of fractions are required only for the last of the five index laws.
No algebra is assumed in this module.
return to top
MOTIVATION
Multiplication and division of whole numbers throw up many surprising things. This module encourages multiplicative thinking about numbers, and introduces ideas that are essential skills in fractions and algebra.
The ideas of this module are presented in purely arithmetical form, and no algebra is used except in some remarks that look forward to later work. The only numbers in the module are whole numbers, apart from the final paragraphs, where fractions are used so that the fifth index law can be presented in a more satisfactory form.
Students first meet the distinction between odd numbers and even numbers in early primary school, but it is useful everywhere in mathematics. Even numbers are multiples of 2, and more generally, multiples arise throughout mathematics and everyday life. The mass of a stack of bricks is a multiple of the mass of one brick. The number of pages in a packet of notebooks is a multiple of the number of pages in one notebook.
The factors of a number can be displayed using rectangular arrays. Some numbers, such as 30, can arise in many different ways as a product,
30 = 1 × 30 = 2 × 15 = 3 × 10 = 5 × 6 = 2 × 3 × 5,
whereas a number such as 31 can only be written trivially as the product 31 = 1 × 31. This idea leads to the classification of numbers greater than 1 as either prime or composite, and to a listing of all the factors of a number.
There are several groups of well-known divisibility tests that can check whether a number is a factor without actually performing the division. These tests greatly simplify the listing of factors of numbers.
Repeated addition leads to multiplication. Repeated multiplication in turn leads to powers, and manipulating powers in turn relies on five index laws. Powers are introduced in this module, together with four of the five index laws.
We are used to comparing numbers in terms of their size. The highest common factor (HCF) and lowest common multiple (LCM) allow us to compare numbers in terms of their factors and multiples. For example, when we look at 30 and 12, we see that they are both multiples of 6, and that 6 is the greatest factor common to both numbers. We also see that 60 is a multiple of both numbers, and that 60 is the lowest common multiple of them (apart from 0). The HCF and LCM are essential for fractions and later for algebra.
Experience with the four operations of arithmetic.
Instant recall of the multiplication table up to 12 × 12.
Fractions and multiplication of fractions are required only for the last of the five index laws.
No algebra is assumed in this module.
return to top
MOTIVATION
Multiplication and division of whole numbers throw up many surprising things. This module encourages multiplicative thinking about numbers, and introduces ideas that are essential skills in fractions and algebra.
The ideas of this module are presented in purely arithmetical form, and no algebra is used except in some remarks that look forward to later work. The only numbers in the module are whole numbers, apart from the final paragraphs, where fractions are used so that the fifth index law can be presented in a more satisfactory form.
Students first meet the distinction between odd numbers and even numbers in early primary school, but it is useful everywhere in mathematics. Even numbers are multiples of 2, and more generally, multiples arise throughout mathematics and everyday life. The mass of a stack of bricks is a multiple of the mass of one brick. The number of pages in a packet of notebooks is a multiple of the number of pages in one notebook.
The factors of a number can be displayed using rectangular arrays. Some numbers, such as 30, can arise in many different ways as a product,
30 = 1 × 30 = 2 × 15 = 3 × 10 = 5 × 6 = 2 × 3 × 5,
whereas a number such as 31 can only be written trivially as the product 31 = 1 × 31. This idea leads to the classification of numbers greater than 1 as either prime or composite, and to a listing of all the factors of a number.
There are several groups of well-known divisibility tests that can check whether a number is a factor without actually performing the division. These tests greatly simplify the listing of factors of numbers.
Repeated addition leads to multiplication. Repeated multiplication in turn leads to powers, and manipulating powers in turn relies on five index laws. Powers are introduced in this module, together with four of the five index laws.
We are used to comparing numbers in terms of their size. The highest common factor (HCF) and lowest common multiple (LCM) allow us to compare numbers in terms of their factors and multiples. For example, when we look at 30 and 12, we see that they are both multiples of 6, and that 6 is the greatest factor common to both numbers. We also see that 60 is a multiple of both numbers, and that 60 is the lowest common multiple of them (apart from 0). The HCF and LCM are essential for fractions and later for algebra.
Similar questions