Math, asked by humnahashmi2001, 10 months ago

Which is the root of the equation x^4-9x^3-6x^2+2=? ​

Answers

Answered by Anmolabd
6

Step-by-step explanation:

STEP1:Equation at the end of step 1 (((x4)-(9•(x3)))+(2•3x2))+2 STEP 2 :Equation at the end of step2: (((x4) - 32x3) + (2•3x2)) + 2 STEP3:Checking for a perfect cube

 3.1    x4-9x3+6x2+2  is not a perfect cube

Trying to factor by pulling out :

 3.2      Factoring:  x4-9x3+6x2+2 

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  6x2+2 

Group 2:  -9x3+x4 

Pull out from each group separately :

Group 1:   (3x2+1) • (2)

Group 2:   (x-9) • (x3)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

 3.3    Find roots (zeroes) of :       F(x) = x4-9x3+6x2+2

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  2.

 The factor(s) are:

of the Leading Coefficient :  1

 of the Trailing Constant :  1 ,2

 Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor     -1     1      -1.00      18.00        -2     1      -2.00      114.00        1     1      1.00      0.00    x-1      2     1      2.00      -30.00   

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

   x4-9x3+6x2+2 

can be divided with  x-1 

Polynomial Long Division :

 3.4    Polynomial Long Division

Dividing :  x4-9x3+6x2+2 

                              ("Dividend")

By         :    x-1    ("Divisor")

dividend  x4 - 9x3 + 6x2   + 2 - divisor * x3   x4 - x3       remainder  - 8x3 + 6x2   + 2 - divisor * -8x2   - 8x3 + 8x2     remainder    - 2x2   + 2 - divisor * -2x1     - 2x2 + 2x   remainder      - 2x + 2 - divisor * -2x0       - 2x + 2 remainder         0

Quotient :  x3-8x2-2x-2  Remainder:  0 

Polynomial Roots Calculator :

 3.5    Find roots (zeroes) of :       F(x) = x3-8x2-2x-2

     See theory in step 3.3

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -2.

 The factor(s) are:

of the Leading Coefficient :  1

 of the Trailing Constant :  1 ,2

 Let us test ....

  P  Q  P/Q  F(P/Q)   Divisor     -1     1      -1.00      -9.00        -2     1      -2.00      -38.00        1     1      1.00      -11.00        2     1      2.00      -30.00   

Polynomial Roots Calculator found no rational roots

please mark as brilliant it is from by book of maths

Similar questions