Math, asked by 374569, 3 months ago

Which is the value of the expression (StartFraction (10 Superscript 4 Baseline) (5 squared) Over (10 cubed) (5 cubed)) cubed?

Answers

Answered by usha66276
0

Answer:

Exponents

Overview

Raising a base number x to the power of n => multiplying the base number x by itself n times

Shorthand for multiplying the base number x by itself n times: x Superscript n question-mark Baseline equals y

Exponent (n) notation: x Superscript n

Operations

Procedure to MULTIPLY numbers with exponents, given they have the same base => ADD the exponents

Multiplication example: x squared times x Superscript 5 Baseline equals x Superscript 2 plus 5 Baseline equals x Superscript 7

Procedure to DIVIDE numbers with exponents, given they have the same base => SUBTRACT the exponents

Division example: StartFraction x squared Over x cubed EndFraction equals x Superscript 2 minus 3 Baseline equals x Superscript negative 1

Examples

Exponent example: 3 squared equals 3 times 3 equals 9

Radicals / Roots

Overview

Opposite of exponent - finding the base number x, given y (the result) and the exponent n of the base number - e.g. square root, cube root

To find the base number x: x question-mark Superscript n Baseline equals y

Notations

nth Root notation: RootIndex n StartRoot y EndRoot

Square Root notation: StartRoot y EndRoot

Cube Root notation: RootIndex 3 StartRoot y EndRoot

Examples

Square Root example: x squared equals 9 x equals StartRoot 9 EndRoot equals 3

Logarithms

Overview

The exponent n for a given base number x and result y

To find the exponent n to determine how many times to multiply a base number by itself to get the given result: x Superscript n question-mark Baseline equals y

Log notation: n equals log Subscript x Baseline left-parenthesis y right-parenthesis

Examples

Log example: 5 Superscript n question-mark Baseline equals 25 n equals log Subscript 5 Baseline left-parenthesis 25 right-parenthesis n equals 2

Common Logarithm

The "common logarithm" of a number is an exponential for the base 10

"Common Log notation - default of base 10: log left-parenthesis y right-parenthesis equals log Subscript 10 Baseline left-parenthesis y right-parenthesis

Log example: 10 Superscript n Baseline equals 1000 n equals log Subscript 10 Baseline left-parenthesis 1000 right-parenthesis equals log left-parenthesis 1000 right-parenthesis n equals 3

Natural Logarithm

The "natural logarithm (ln)" of a number is an exponential for the base e, where e is a constant ~2.718

Natural Log notation: ln left-parenthesis y right-parenthesis equals log left-parenthesis e right-parenthesis

Natural Log example: log Subscript e Baseline left-parenthesis 64 right-parenthesis equals ln left-parenthesis 64 right-parenthesis equals 4.1589

Inverse of Natural Log: e Superscript x

Derivative of ln x: StartFraction 1 Over x EndFraction

Properties / Laws

Distributive Property

Allows algebraic expressions in the form of a(b + c) to be reformulated to an equivalent expression

Distributive law: a left-parenthesis b plus c right-parenthesis equals a b plus a c

Khan Academy: Distributive Property

Monomials

Monomial - an algebric expression that contains only one term

Trinomials

Trinomial - an algebric expression that contains only three terms

Factoring

Rewriting a number or term as a product of several smaller factors or values in common

Difference of Squares Pattern

Every polynomial that is a difference of square terms can be factored with this formula: a squared minus b squared equals left-parenthesis a plus b right-parenthesis left-parenthesis a minus b right-parenthesis

Khan Academy: Factoring

Binomials

Overview

Binomial - an algebric expression that contains only two terms

Operations

Difference of Squares Pattern - special products of binomials (applying the Distributive Property twice): left-parenthesis a plus b right-parenthesis left-parenthesis a minus b right-parenthesis equals a left-parenthesis a plus b right-parenthesis minus b left-parenthesis a plus b right-parenthesis equals a squared plus a b minus a b minus b squared equals a squared minus b squared

Squaring binonmials of the form (a+b)^2: left-parenthesis a plus b right-parenthesis squared equals left-parenthesis a plus b right-parenthesis left-parenthesis a plus b right-parenthesis equals a squared plus 2 a b plus b squared

Squaring binonmials of the form (a-b)^2: left-parenthesis a minus b right-parenthesis squared equals left-parenthesis a minus b right-parenthesis left-parenthesis a minus b right-parenthesis equals a squared minus 2 a b plus b squared

Squaring binonmials of the form (ax+b)^2: left-parenthesis x plus a right-parenthesis squared equals left-parenthesis x plus a right-parenthesis left-parenthesis x plus a right-parenthesis equals x squared plus 2 a x plus a squared

Similar questions