Math, asked by timmyman0401, 3 months ago

Which lines are the directrices of the ellipse?

x = −4.25 and x = 8.25
x = −3.25 and x = 9.25
y = −4.25 and y = 8.25
y = −3.25 and y = 9.25

Attachments:

Answers

Answered by MaheswariS
5

\textbf{To find:}

\textsf{Equation of directrices of the given ellipse}

\textbf{Solution:}

\textsf{From the figure, 2a=10, 2b=6}

\mathsf{and\;centre\;is\;(3,2)}

\implies\mathsf{a=5\;and\;b=3}

\textsf{The equation of ellipse is }

\mathsf{\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1}

\mathsf{\dfrac{(x-3)^2}{5^2}+\dfrac{(y-2)^2}{3^2}=1}

\mathsf{\dfrac{(x-3)^2}{25}+\dfrac{(y-2)^2}{9}=1}

\mathsf{Eccentricity,\;e=\sqrt{1-\dfrac{b^2}{a^2}}=\sqrt{1-\dfrac{9}{25}}=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}}}

\implies\mathsf{e=\dfrac{4}{5}}

\mathsf{\dfrac{a}{e}=\dfrac{5}{\dfrac{4}{5}}=\dfrac{25}{4}}

\mathsf{Equation\;of\;directrices\;are}

\mathsf{x-3=\pm\,\dfrac{25}{4}}

\mathsf{x-3=\pm\,6.25}

\mathsf{x=3\,\pm\,6.25}

\mathsf{x=3+6.25\;and\;x=3-6.25}

\implies\boxed{\mathsf{x=9.25\;and\;x=-3.25}}

Find more:

Eccentricity of the ellipse whose latus rectum is equal to the distance between two focus points, is

https://brainly.in/question/19268395

Similar questions