Which multiplication expression is equivalent to
2x2 – 5.x - 3 3x4 - 11x + 6
?
2
4.x- + 12x + 5 6.x4 + 11x – 10
Answers
Answer:
Correct question: 2x2 - 5x - 3 / 4x2 + 12x + 5 divided by 3x2 - 11x + 6 / 6x2 + 11x - 10.
As given: \frac{(2x^{2}-5x-3) }{(4x^{2}+12x+5 )} \div \frac{(3x^{2} -11x+6)}{(6x^{2}+11x-10) }
(4x
2
+12x+5)
(2x
2
−5x−3)
÷
(6x
2
+11x−10)
(3x
2
−11x+6)
Solving it by using quadratic equation.
= \frac{(2x^{2}-6x+1x-3) }{(4x^{2}+10x+2x+5) } \div \frac{(3x^{2}-9x-2x+6 }{(6x^{2}+15x-4x-10) }
(4x
2
+10x+2x+5)
(2x
2
−6x+1x−3)
÷
(6x
2
+15x−4x−10)
(3x
2
−9x−2x+6
= \frac{(2x+1) (x-3)}{(2x+1) (2x+5)} \div \frac{(3x-2) (x-3)}{(2x+5) (3x-2)}
(2x+1)(2x+5)
(2x+1)(x−3)
÷
(2x+5)(3x−2)
(3x−2)(x−3)
To divide fraction take the reciprocal of divisor and multiply the dividend.
= \frac{(2x+1) (x-3)}{(2x+1) (2x+5)} \times \frac{(2x+5) (3x-2)}{(3x-2) (x-3)}
(2x+1)(2x+5)
(2x+1)(x−3)
×
(3x−2)(x−3)
(2x+5)(3x−2)
We solve it to get 1 as it cancel fraction on both side.
Answer is 1.