Math, asked by NainaMehra, 1 year ago

Which of the following are quadratic equations in x ?

v) \: \: x {}^{2} - 3x - \sqrt{x} + 4 = 0

xi) \: (x + \frac{1}{x} ) {}^{2} = 2(x + \frac{1}{x} ) + 3


Class 10

Quadratic Equation

Answers

Answered by Anonymous
27
Hey there !!


Q. Which of the following are quadratic polynomial in x ?

1.  {x}^{2} - 3x - \sqrt{x} + 4 = 0

2.  {(x + \frac{1}{x} )}^{2} = 2(x + \frac{1}{x} ) + 3


▶ Solution :-

1.  {x}^{2} - 3x - \sqrt{x} + 4 = 0.

 {x}^{2} - 3x - \sqrt{x} + 4 = 0 contains a term with  \sqrt{x} , i.e.,  {x}^{ \frac{1}{2} } where  \frac{1}{2} is not a integer.

→ Therefore, it is not a quadratic polynomial.


•°•  {x}^{2} - 3x - \sqrt{x} + 4 = 0 is not a quadratic equation.



2.  {(x + \frac{1}{x} )}^{2} = 2(x + \frac{1}{x} ) + 3


  \bf \: = >  {( \frac{ {x}^{2}  + 1}{x} )}^{2}  = 2( \frac{ {x}^{2}  + 1}{x} ) + 3.

  \bf \: = >   \frac{ {( {x}^{2}  + 1)}^{2} }{ {x}^{2} }  =  \frac{2 {x}^{2} + 2 }{x}  + 3.


  \bf \: = > { ( {x}^{2}  + 1)}^{2}  =   {x} \cancel{^{2} } ( \frac{2 {x}^{2}  + 2}{ \cancel{x}} ) + 3 \times  {x}^{2} .

=> ( x² + 1 )² = 2x( x² + 1 ) + 3x² .

=> x⁴ + 2x + 1 = 2x³ + 2x + 3x² .

=> x⁴ - 2x³ - 3x² + 2x - 2x + 1 = 0.

=> x⁴ - 2x³ - 3x² + 1 = 0.


▶This is not of the form ax² + bx + c = 0.

Hence, the given equation is not a quadratic equation.


✔✔ Hence, it is solved ✅✅.

____________________________________



THANKS


#BeBrainly.


Answered by Anonymous
24
HEY THERE!!!


Question;

Which of the following are quadratic equations in x ?

=> x²-3x-√x+4=0


Method of Solution;

x²-3x-√x+4=0

Here, It Equation contains(Constant term) involving √x ,i.e. , x½ , Where ½ is not an integer.

Since, It not begin in the form of Quardratic Equation as ax²+bx+c=0.

Conclusion; x²-3x-√x+4=0 is not Quardratic Equation;

==================================


 \: (x + \frac{1}{x} ) {}^{2} = 2(x + \frac{1}{x} ) + 3


  \implies\tt\: (x + \frac{1}{x} ) {}^{2} = 2(x + \frac{1}{x} ) + 3 \\  \\  \\    \implies\sf{x}^{2}  +  \frac{1}{ {x}^{2}} + 2.x. \frac{1}{x}  = 2x +  \frac{2}{x}  + 3 \\  \\  \\  \implies\sf{x}^{2}  +  \frac{1}{ {x}^{2}} + 2. \cancel{x}. \frac{1}{ \cancel{x}}  = 2x +  \frac{2}{x}  + 3 \\  \\  \\  \\  \\   \implies\sf {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 =  \frac{ {2x}^{2} +  2 + 3x}{x}  \\  \\  \\  \implies \frac{ {x}^{4} + 1 +  {2x}^{2}  }{ {x}^{2} }  =   \frac{ {2x}^{2}  + 2 + 3x}{x}  \\  \\ \:  \:    \implies\sf \: x( {x}^{4}  + 1 +  {2x}^{2} ) =  {x}^{2} ( {2x}^{2}  + 2 + 3x) \\  \\   \implies \sf{x}^{5}  + x +  {2x}^{3}  =  {2x}^{4}  +  {2x}^{2}  +  {3x}^{3}  \\  \\    \implies\tt{x}^{5}  -  {2x}^{4}  +  {2x}^{3}  -  {3x}^{3}   -  {2x}^{2}  + x = 0   \implies  \\  \\    \sf \implies{x}^{5}  -  {2x}^{4}   -  {x}^{3}  +  {2x}^{2}  + x = 0


Here, This Equation is not in the form of ax²+bx+c=0 , Since It's Considered to be , It is not Quardratic Equation.



Thanks!!!
Similar questions