Which of the following are the benefits of using virtualizatio. Choose exactly THREE answers
1. Reduces total cost of ownership (TCO)
2. Improves agility in software development process through rapid provisioning of VMs
3. Total sales of the enterprise can be improve
4. Allows you to provide better disaster managment whil the capability to migrate VMs from one physical hoster to another
5. Virtual Machine take more time to boot up
Answers
Answer:
3,4,5 answer
Explanation:
please mark me brainliests
Explanation:
\large\underline{\sf{Solution-}}
Solution−
Let assume that
\begin{gathered}\rm \: \alpha ,\gamma \: be \: the \: roots \: of {3x}^{2} - 2x - 5 = 0 \\ \end{gathered}
α,γbetherootsof3x
2
−2x−5=0
Consider,
\begin{gathered}\rm \: {3x}^{2} - 2x - 5 = 0 \\ \end{gathered}
3x
2
−2x−5=0
\begin{gathered}\rm \: {3x}^{2} - 5x + 3x - 5 = 0 \\ \end{gathered}
3x
2
−5x+3x−5=0
\begin{gathered}\rm \: x(3x - 5) + 1(3x - 5) = 0 \\ \end{gathered}
x(3x−5)+1(3x−5)=0
\begin{gathered}\rm \: (x + 1)(3x - 5) = 0 \\ \end{gathered}
(x+1)(3x−5)=0
\begin{gathered}\rm\implies \:x = - 1 \: \: or \: \: x = \dfrac{5}{3} \\ \end{gathered}
⟹x=−1orx=
3
5
\begin{gathered}\rm\implies \: \gamma = - 1 \: \: or \: \: \alpha = \dfrac{5}{3} \\ \rm \: or \\ \rm\implies \: \alpha = - 1 \: \: or \: \: \gamma = \dfrac{5}{3} \\\end{gathered}
⟹γ=−1orα=
3
5
or
⟹α=−1orγ=
3
5
Now,
Let assume that,
\begin{gathered}\rm \: \alpha, \beta \: be \: the \: roots \: of \: {2x}^{2} + px - 1 = 0 \\ \end{gathered}
α,βbetherootsof2x
2
+px−1=0
We know,
\begin{gathered}\boxed{\red{\sf Sum\ of\ the\ roots=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}} \\ \end{gathered}
Sum of the roots=
coefficient of x
2
−coefficient of x
\begin{gathered}\rm\implies \: \alpha + \beta = - \dfrac{p}{2} \\ \end{gathered}
⟹α+β=−
2
p
Also,
\begin{gathered}\boxed{\red{\sf Product\ of\ the\ roots=\frac{Constant}{coefficient\ of\ x^{2}}}} \\ \end{gathered}
Product of the roots=
coefficient of x
2
Constant
\begin{gathered}\rm\implies \: \alpha \beta = - \dfrac{1}{2} \\ \end{gathered}
⟹αβ=−
2
1
It means, we have
\begin{gathered}\rm\implies \: \alpha + \beta = - \dfrac{p}{2} \: \: and \: \: \alpha \beta = - \dfrac{1}{2} \\ \end{gathered}
⟹α+β=−
2
p
andαβ=−
2
1
Case :- 1
\begin{gathered}\rm \: \alpha = - 1 \\\end{gathered}
α=−1
As, we have
\begin{gathered}\rm \: \alpha \beta = - \dfrac{1}{2} \\ \end{gathered}
αβ=−
2
1
\begin{gathered}\rm \: ( - 1) \beta = - \dfrac{1}{2} \\ \end{gathered}
(−1)β=−
2
1
\begin{gathered}\rm \:\beta = \dfrac{1}{2} \\ \end{gathered}
β=
2
1
Now,
\begin{gathered}\rm \: \alpha + \beta = - \dfrac{p}{2} \\ \end{gathered}
α+β=−
2
p
\begin{gathered}\rm \: - 1 + \dfrac{1}{2} = - \dfrac{p}{2} \\ \end{gathered}
−1+
2
1
=−
2
p
\begin{gathered}\rm \: - \dfrac{1}{2} = - \dfrac{p}{2} \\ \end{gathered}
−
2
1
=−
2
p
\begin{gathered}\rm\implies \:p \: = \: 1 \\ \end{gathered}
⟹p=1
Now, Consider Case :- 2
\begin{gathered}\rm \: \alpha = \dfrac{5}{3} \\\end{gathered}
α=
3
5
As, we have
\begin{gathered}\rm \: \alpha \beta = - \dfrac{1}{2} \\ \end{gathered}
αβ=−
2
1
\begin{gathered}\rm \: \frac{5}{3} \times \beta = - \dfrac{1}{2} \\ \end{gathered}
3
5
×β=−
2
1
\begin{gathered}\rm \: \beta = - \dfrac{3}{10} \\ \end{gathered}
β=−
10
3
Now,
\begin{gathered}\rm \: \alpha + \beta = - \dfrac{p}{2} \\ \end{gathered}
α+β=−
2
p
\begin{gathered}\rm \: \dfrac{5}{3} - \dfrac{3}{10} = - \dfrac{p}{2} \\ \end{gathered}
3
5
−
10
3
=−
2
p
\begin{gathered}\rm \: \dfrac{50 - 9}{30} = - \dfrac{p}{2} \\ \end{gathered}
30
50−9
=−
2
p
\begin{gathered}\rm \: \dfrac{41}{30} = - \dfrac{p}{2} \\ \end{gathered}
30
41
=−
2
p
\begin{gathered}\rm\implies \:p \: = \: - \: \dfrac{41}{15}\\ \end{gathered}
⟹p=−
15
41
So,
\begin{gathered}\begin{gathered}\begin{gathered}\bf\: \rm\implies \:\begin{cases} &\bf{p \: = \: 1} \\ \\ &\sf{or}\\ \\ &\bf{p \: = \: - \: \dfrac{41}{15} } \end{cases}\end{gathered}\end{gathered}\end{gathered}
⟹
⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
p=1
or
p=−
15
41
\rule{190pt}{2pt}
Additional Information :-
Nature of roots :-
Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.
If Discriminant, D > 0, then roots of the equation are real and unequal.
If Discriminant, D = 0, then roots of the equation are real and equal.
If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.
Where,
Discriminant, D = b² - 4ac