which of the following can be the sides of a right-angled triangle?
15cm, 32cm, 57cm
65cm, 72cm, 97cm
20cm, 21cm, 31cm
35cm, 77cm, 88cm
Answers
EXPLANATION.
Right angled triangle.
As we know that,
In right angled triangle,
⇒ H² = P² + B².
Hypotenuse is equal to sum of their base and perpendicular sides, we get.
Always take biggest length as hypotenuse.
Their order,
Hypotenuse > perpendicular > base.
(1) = 15cm, 32cm, 57cm,
Hypotenuse = 57cm
Perpendicular = 32cm
base = 15cm.
⇒ H² = P² + B².
⇒ (57)² = (32)² + (15)².
⇒ 3249 = 1024 + 225.
⇒ 3249 = 1249.
⇒ 3249 ≠ 1249
It is not a right angled triangle.
(2) = 65cm, 72cm, 97cm.
Hypotenuse = 97cm.
Perpendicular = 72cm.
Base = 65cm.
⇒ H² = P²+ B².
⇒ (97)² = (72)² + (65)².
⇒ 9409 = 5184 + 4225.
⇒ 9409 = 9409.
It is a right angled triangle.
(3) = 20cm, 21cm, 31cm.
Hypotenuse = 31cm.
Perpendicular = 21cm.
Base = 20cm.
⇒ H² = P² + B².
⇒ (31)² = (21)² + (20)².
⇒ 961 = 441 + 400.
⇒ 961 = 841.
⇒ 961 ≠ 841.
It is not a right angled triangle.
(4) = 35cm, 77cm, 88cm.
Hypotenuse = 88cm.
Perpendicular = 77cm.
Base = 35cm.
⇒ H² = P² + B².
⇒ (88)² = (77)² + (35)².
⇒ 7744 = 5929 + 1225.
⇒ 7744 = 7154.
⇒ 7744 ≠ 7154.
It is not a right angled triangle.
Option [B] is a correct answer.
Answer:
Question :-
➦ Which of the following can be the sides of a right angled triangle ?
1) 15 cm , 32 cm , 57 cm
2) 65 cm , 72 cm , 97 cm
3) 20 cm , 21 cm , 31 cm
4) 35 cm , 77 cm , 88 cm
Solution :-
As we know that,
✯ (Hypotenuse)² = (Perpendicular)² + (Base)² ✯
1) 15 cm , 32 cm , 57 cm
We know that, Hypotenuse is the largest side.
Given :
- Hypotenuse = 57 cm
- Perpendicular = 32 cm
- Base = 15 cm
According to the question by using the formula we get,
⇒ (57)² = (32)² + (15)²
⇒ 57 × 57 = 32 × 32 + 15 × 15
⇒ 3249 = 1024 + 225
⇒ 3249 = 1249
➠ 3249 ≠ 1249
Pythagoras theorem is not satisfied.
Hence, 15 cm , 32 cm , 57 cm does not form the side of a right angled triangle.
_____________________
2) 65 cm ,72 cm , 97 cm
We know that,
✧ (Hypotenuse)² = (Perpendicular)² + (Base)² ✧
We know that, Hypotenuse is the largest side.
Given :
- Hypotenuse = 97 cm
- Perpendicular = 72 cm
- Base = 65 cm
According to the question by using the formula we get,
⇒ (97)² = (72)² + (65)²
⇒ 97 × 97 = 72 × 72 + 65 × 65
⇒ 9409 = 5184 + 4225
⇒ 9409 = 9409
➠ 9409 = 9409
Pythagoras theorem is satisfied.
Hence, 65 cm , 72 cm , 97 cm form the side of a right angled triangle.
_______________________
3) 20 cm , 21 cm , 31 cm
As we know that,
✪ (Hypotenuse)² = (Perpendicular)² + (Base)² ✪
We know that, Hypotenuse is the largest side.
Given :
- Hypotenuse = 31 cm
- Perpendicular = 21 cm
- Base = 20 cm
According to the question by using the formula we get,
⇒ (31)² = (21)² + (20)²
⇒ 31 × 31 = 21 × 21 + 20 × 20
⇒ 961 = 441 + 400
⇒ 961 = 841
➠ 961 ≠ 841
Pythagoras theorem is not satisfied.
Hence, 20 cm , 21 cm , 31 cm does not form the side of a right angled triangle.
_______________________
4) 35 cm , 77 cm , 88 cm
As we know that,
★ (Hypotenuse)² = (Perpendicular)² + (Base)² ★
We know that, Hypotenuse is the largest side.
Given :
- Hypotenuse = 88 cm
- Perpendicular = 77 cm
- Base = 35 cm
According to the question by using the formula we get,
⇒ (88)² = (77)² + (35)²
⇒ 88 × 88 = 77 × 77 + 35 × 35
⇒ 7744 = 5929 + 1225
⇒ 7744 = 7154
➠ 7744 ≠ 7154
Pythagoras theorem is not satisfied.
Hence, 35 cm , 77 cm , 88 cm does not form the side of a right angled triangle.
______________________
Hence, correct options is option no (2).
65 cm , 72 cm , 97 cm