Math, asked by sarahaquil2109, 6 months ago

Which of the following can be the sides of a right triangle?
(a) 2.5 cm, 6.5 cm, 6 cm
(b) 2 cm, 2 cm, 5 cm
(c) 1.5 cm, 2 cm, 2.5 cm
Both (a) and (c)

Answers

Answered by suraj5070
254

 \huge {\boxed {\mathbb {QUESTION}}}

Which of the following can be the sides of a right triangle?

(a) 2.5 cm, 6.5 cm, 6 cm

(b) 2 cm, 2 cm, 5 cm

(c) 1.5 cm, 2 cm, 2.5 cm

Both (a) and (c)

 \huge {\boxed {\mathbb {ANSWER}}}

 Square\: of \:the\: largest\: side\: is \:equal\: to\: the\\ sum\: of \:the\: squares\: of\: other\: two\: sides\: then\: it\\ is\: a \:right\: angled\: triangle

\huge {(a) 2.5 cm, 6.5 cm, 6 cm}

 Largest\: side=6.5cm

 Other\: two \:sides =2.5cm,6cm

 \implies {(6.5)}^{2}={(2.5)}^{2}+{(6)}^{2}

 \implies 42.25=6.25+36

 \implies{\boxed{\boxed {42.25=42.25}}}

 \therefore 2.5 cm, 6.5 cm, 6 cm\: becomes\: right \:angled\: triangle

_________________________________________

\huge {(b) 2 cm, 2 cm, 5 cm}

 Largest\: side=5cm

 Other\: two \:sides =2cm,2cm

 \implies {(5)}^{2}={(2)}^{2}+{(2)}^{2}

 \implies 25=4+4

 \implies{\boxed{\boxed {25 \cancel{=}8}}}

 \therefore 2 cm, 2 cm, 5 cm\:doesn't \: becomes\: right \:angled\: triangle

_________________________________________

\huge {(c) 1.5 cm, 2 cm, 2.5 cm}

 Largest\: side=2.5cm

 Other\: two \:sides =1.5cm,2cm

 \implies {(2.5)}^{2}={(1.5)}^{2}+{(2)}^{2}

 \implies 6.25=2.25+4

 \implies{\boxed{\boxed {6.25=6.25}}}

 \therefore 2 cm, 2 cm, 5 cm \: becomes\: right \:angled\: triangle

_________________________________________

Which of the following can be the sides of a right triangle?

{\boxed {(a) 2.5 cm, 6.5 cm, 6 cm✅}}

 {\boxed {(b) 2 cm, 2 cm, 5 cm❌}}

 {\boxed {(c) 1.5 cm, 2 cm, 2.5 cm✅}}

 {\boxed {(d) Both (a) and (c)✅}}

 \therefore Option\: (d) \:is\: correct

 \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU }}}

_________________________________________

 \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 Properties\: of \:right\: angled\: triangle

  •  One\: angle\: is \:always \:{90}^{\circ} \:or\: right \:angle.
  •  The\: side\: opposite\: angle\: {90}^{\circ} \:is \:the\\ hypotenuse.
  •  The\: hypotenuse\: is\: always\: the\: longest\\ side.
  •  The\: sum\: of\: the\: other\: two\: interior\: angles\: is \:\\equal to {90}^{\circ} .
  •  The\: other\: two\: sides\: adjacent\: to\: the\\ right\: angle\: are\: called\: base\: and\\perpendicular.

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Answered by jimin084
3

Answer:

hey are u an army....nice to meet u

Similar questions