Math, asked by kanisharawat0, 10 months ago

Which of the following equation ha no real root.
a› x²+ 4x - 3 √ 2 = 0
b› x²- 4x + 3 √ 2 = 0
c›x²-4x - 3 √ 2 = 0
d›x²+ 4x + 3 √ 2 = 0 ​

Answers

Answered by BrainlyPopularman
21

Question :

● Which of the following equation has no real root.

(a) x² + 4x - 3√2 = 0

(b) x² - 4x + 3√2 = 0

(c) x² - 4x - 3√2 = 0

(d) x² + 4x + 3√2 = 0

ANSWER :

• To know the nature of roots , we have to calculate Discriminant of the quadratic equation ax² + bx + c = 0.

 \\  \bigstar \:  \large \:  \:  { \red{ \boxed{ \bold{D =  {b}^{2} - 4ac }}}} \\

☞ When –

 \\   \: \:  \:  \:  \:{ \huge{.}} \:  \:  \:  \:   { \blue{ \bold{D  > 0 , \:  \: roots \:  \: are \:  \: real \:  \: and \:  \: Distinct.}}} \\

 \\   \: \:  \:  \:  \:{ \huge{.}} \:  \:  \:  \:   { \blue{ \bold{D   =  0  \:  \: , \:  \: roots \:  \: are \:  \: real \:  \: and \:  \: same.}}} \\

 \\   \: \:  \:  \:  \:{ \huge{.}} \:  \:  \:  \:   { \blue{ \bold{D   <   0  \:  \: , \:  \: roots \:  \: are \:  \: imaginary. }}} \\

OPTION (a) :

x² + 4x - 3√2 = 0

 \\  \implies \:  { \bold{D =  {b}^{2} - 4ac }} \\

 \\  \implies \:  { \bold{D =  {(4)}^{2} - 4(1)( - 3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16- 4( - 3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16 + 12\sqrt{2} > 0  }} \\

 \\  \longrightarrow  \:  { \bold{  Hence \:  \:  roots \:  \: are \:  \: real \:  \: and \:  \: Distinct .  }} \\

OPTION (b) :–

• x² - 4x + 3√2 = 0

 \\  \implies \:  { \bold{D =  {b}^{2} - 4ac }} \\

 \\  \implies \:  { \bold{D =  {( - 4)}^{2} - 4(1)(  3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16- 4(  3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16  -  12\sqrt{2}   }} \\

 \\  \implies \:  { \bold{D =   - 0.97 (Approximate) }} \\

 \\  \implies \:  { \bold{D  < 0}} \\

 \\  \longrightarrow  \:  { \bold{  Hence \:  \:  roots \:  \: are \:  \: imaginary. }} \\

OPTION (c) :–

• x² - 4x - 3√2 = 0

 \\  \implies \:  { \bold{D =  {b}^{2} - 4ac }} \\

 \\  \implies \:  { \bold{D =  {( - 4)}^{2} - 4(1)(  -  3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16- 4(  -  3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16   +  12\sqrt{2}  > 0  }} \\

 \\  \longrightarrow  \:  { \bold{  Hence \:  \:  roots \:  \: are \:  \: real \:  \: and \:  \: Distinct .  }} \\

OPTION (d) :–

• x² + 4x + 3√2 = 0

 \\  \implies \:  { \bold{D =  {b}^{2} - 4ac }} \\

 \\  \implies \:  { \bold{D =  {( 4)}^{2} - 4(1)(  3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16- 4(  3 \sqrt{2})  }} \\

 \\  \implies \:  { \bold{D =  16  -  12\sqrt{2}   }} \\

 \\  \implies \:  { \bold{D =   - 0.97 (Approximate) }} \\

 \\  \implies \:  { \bold{D  < 0}} \\

 \\  \longrightarrow  \:  { \bold{  Hence \:  \:  roots \:  \: are \:  \: imaginary. }} \\

• So that , OPTION (b) & OPTION (d) have no real roots.

Hence , OPTION (b) & (d) are correct.

Answered by januu36
5

Step-by-step explanation:

The quadratic equation ax

2

+bx+c=0 has no real roots only when discriminant D<0

D=b

2

−4ac<0

A) x

2

+4x+3

2

=0

Here,

D=(4)

2

−4×3

2

=16−16.97<0

B) x

2

+4x−3

2

=0

Here,

D=(4)

2

−4×(−3

2

)

=16+16.97>0

C) x

2

+5x+3

2

=0

Here,

D=(5)

2

−4×(3

2

)

=25−16.97>0

D) 3x

2

+4

3

x+4=0

Here,

D=(4

3

)

2

−4×3×4

=48−48=0

Similar questions