Which of the following equation ha no real root.
a› x²+ 4x - 3 √ 2 = 0
b› x²- 4x + 3 √ 2 = 0
c›x²-4x - 3 √ 2 = 0
d›x²+ 4x + 3 √ 2 = 0
Answers
Question :–
● Which of the following equation has no real root.
(a) x² + 4x - 3√2 = 0
(b) x² - 4x + 3√2 = 0
(c) x² - 4x - 3√2 = 0
(d) x² + 4x + 3√2 = 0
ANSWER :–
• To know the nature of roots , we have to calculate Discriminant of the quadratic equation ax² + bx + c = 0.
☞ When –
OPTION (a) :–
• x² + 4x - 3√2 = 0
OPTION (b) :–
• x² - 4x + 3√2 = 0
OPTION (c) :–
• x² - 4x - 3√2 = 0
OPTION (d) :–
• x² + 4x + 3√2 = 0
• So that , OPTION (b) & OPTION (d) have no real roots.
• Hence , OPTION (b) & (d) are correct.
Step-by-step explanation:
The quadratic equation ax
2
+bx+c=0 has no real roots only when discriminant D<0
D=b
2
−4ac<0
A) x
2
+4x+3
2
=0
Here,
D=(4)
2
−4×3
2
=16−16.97<0
B) x
2
+4x−3
2
=0
Here,
D=(4)
2
−4×(−3
2
)
=16+16.97>0
C) x
2
+5x+3
2
=0
Here,
D=(5)
2
−4×(3
2
)
=25−16.97>0
D) 3x
2
+4
3
x+4=0
Here,
D=(4
3
)
2
−4×3×4
=48−48=0