Math, asked by gurdit4309, 4 months ago

which of the following equation is not quadratic equation? (a) 2x-5/ x=3 (b) x-1/x=7 (c) 2x2-5x=x2+5 (d) x2+1/x=5​

Answers

Answered by aldomicheal30
0

Answer:

c will be the answer of the following question

Answered by brainlyofficial11
6

 \bold{(a)2x -  \frac{5}{x}  = 3} \\  \\  \bold{:  \implies  \frac{2 {x}^{2}  - 5}{x} = 3 }   \:  \:  \:  \:  \:  \:  \: \:  \: \\  \\  \bold{: \implies 2 {x}^{2}  - 5 \: = 3x } \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{:  \implies 2 {x}^{2} - 3x - 5 = 0 }

the equation is in the form of ax² + bx + c = 0

so, the equation is quadratic.

_________________________

 \bold{(b)x -  \frac{1}{x} = 7 } \\  \\  \bold{:  \implies  \frac{ {x}^{2}  - 1} {x}  = 7} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \bold{: \implies  {x}^{2} - 1 = 7x  } \:  \:  \:  \:  \:  \:  \:  \\   \\  \bold{: \implies  {x}^{2}  - 7x - 1 = 0} the equation in the form of ax² + bx + c = 0

so, the equation is quadratic

_________________________

 \bold{(c)2 {x}^{2}  - 5x =  {x}^{2}  + 5} \\  \\  \bold{: \implies2 {x}^{2}    -  {x}^{2 } - 5 x - 5 = 0 } \\  \\  \bold{: \implies  {x}^{2}   - 5x - 5 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

the equation is in the form of ax² + bx + c = 0

so, the equation is quadratic

_________________________

 \bold{(d) {x}^{2}  + \frac{1}{x}   = 5 } \\  \\  \bold{: \implies   \frac{ {x}^{3} + 1  }{x}  = 5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\   \\  \bold{:  \implies  {x}^{3}  + 1 = 5x}  \:  \:  \:  \:  \:  \:  \: \\  \\  \bold{ : \implies  {x}^{3}   - 5x + 1 = 0 }

the equation is in the form of ax³+ bx + c = 0

the equation is cubic

so, the equation is not quadratic

hence,(d) x2+1/x=5 is not quadratic equation

Similar questions