Biology, asked by Anonymous, 4 months ago

Which of the following explains the promise of nanoparticle cancer treatment?

The nanoparticle treatment is cheaper than radiation.
The nanoparticle treatment destroys a cell’s DNA.
The nanoparticle treatment ionizes the target atoms.
The nanoparticle treatment does not harm healthy cells.

Answers

Answered by pandeymadhuri945
14

Answer:

AnSWer❤️

_________

Cancer therapies are currently limited to surgery, radiation, and chemotherapy. All three methods risk damage to normal tissues or incomplete eradication of the cancer. Nanotechnology offers the means to target chemotherapies directly and selectively to cancerous cells and neoplasms, guide in surgical resection of tumors, and enhance the therapeutic efficacy of radiation-based and other current treatment modalities. All of this can add up to a decreased risk to the patient and an increased probability of survival.

Research on nanotechnology cancer therapy extends beyond drug delivery into the creation of new therapeutics available only through use of nanomaterial properties. Although small compared to cells, nanoparticles are large enough to encapsulate many small molecule compounds, which can be of multiple types. At the same time, the relatively large surface area of nanoparticle can be functionalized with ligands, including small molecules, DNA or RNA strands, peptides, aptamers or antibodies. These ligands can be used for therapeutic effect or to direct nanoparticle fate in vivo. These properties enable combination drug delivery, multi-modality treatment and combined therapeutic and diagnostic, known as “theranostic,” action. The physical properties of nanoparticles, such as energy absorption and re-radiation, can also be used to disrupt diseased tissue, as in laser ablation and hyperthermia applications.

Integrated development of innovative nanoparticle packages and active pharmaceutical ingredients will also enable exploration of a wider repertoire of active ingredients, no longer confined to those with acceptable pharmokinetic or biocompatibility behavior. In addition, immunogenic cargo and surface coatings are being investigated as both adjuvants to nanoparticle-mediated and traditional radio- and chemotherapy as well as stand-alone therapies. Innovative strategies include the design of nanoparticles as artificial antigen presenting cells and in vivo depots of immunostimulatory factors that exploit nanostructured architecture for sustained anti-tumor activity.

stay safe nd healthy❤️

kriti here

__________________

Answered by Nathalie14
1

Answer:

yo bae XD that was me lol

Explanation:

Similar questions
Math, 10 months ago