Which of the following expressions is equivalent to sin 6x :
sin 2x cos 4x - cos 4x sin 2x sin 2x cos 4x + cos 2x sin 4x sin 2x + cos (4x) sin 2x + sin 4x None of the above
Answers
Answered by
1
y=sin2(x)+cos4(x)————(1)
=1−cos2(x)+cos4(x)
=1−cos2(x)(1−cos2(x))
=1−cos2(x)sin2(x)
=1−4cos2(x)sin2(x)4
=1−(2cos(x)sin(x))24
=1−sin2(2x)4————(2)
As −1≤sin(2x)≤1
⟹0≤sin2(2x)≤1
⟹0≤sin2(2x)4≤14
⟹0≥−sin2(2x)4≥−14
⟹1−14≤1−sin2(2x)4≤1
⟹34≤y≤1
So, range of sin2(x)+cos4(x) is [ 34 , 1 ]
hope it helps you
plz follow me guys
Answered by
4
Answer:
Given, p=sin
2
x+cos
4
x
=sin
2
x+cos
2
x(1−sin
2
x)
=(sin
2
x+cos
2
x)−sin
2
xcos
2
x
=1−sin
2
xcos
2
x≤1....(i)
Again, p=1−cos
2
x+cos
4
x
=(cos
2
x−
2
1
)
2
+
4
3
⇒p≥
4
3
....(ii)
∴ From Eqs. (i) and (ii), we get
4
3
≤p≤1.
Step-by-step explanation:
Hope it use full now give me a thank
Similar questions
English,
4 months ago
Computer Science,
4 months ago
Math,
4 months ago
English,
9 months ago
Social Sciences,
9 months ago
Environmental Sciences,
1 year ago
Environmental Sciences,
1 year ago