Math, asked by lubna165, 1 month ago

Which of the following identities is false for acute angles?​

Attachments:

Answers

Answered by Anonymous
26

\sf {\red{\underline {\green{\underline {A᭄ɴsᴡᴇʀ࿐ \ :- }}}}}

1) In ΔABC, ∠ABC = 2∠ACB

Let ∠ACB = x

⇒∠ABC = 2∠ACB = 2x

Given BP is bisector of ∠ABC

Hence ∠ABP = ∠PBC = x

Using the angle bisector theorem, that is,

the bisector of an angle divides the side opposite to it in the ratio of other two sides.

Hence, CB : BA= CP:PA.

2) Consider ΔABC and ΔAPB

∠ABC = ∠APB [Exterior angle property]

∠BCP = ∠ABP [Given]

∴ ΔABC ≈ ΔAPB [AA criterion]

∴fraction numerator space AB over denominator BP end fraction space equals space CA over CB[Corresponding sides of similar triangles are proportional.]

⇒ AB x BC = BP x CA

Answered by SteffiPaul
0

Therefore Identity 4 is FALSE for the acute angles.

Given:

Several identities which are listed below:

1.) ( Sin A + Sec A )² + ( Cos A + Cosec A )² =  ( 1 + Sec A .Cosec A )²

2.) ( 1 - Sin A ) / ( 1 + Sin A ) = ( Sec A - Tan A )²

3.) ( 1 + Sin A ) / ( 1 - Sin A ) = ( Sec A + Tan A )²

4.) If A = 60° and B = 30° then Cos ( A - B ) = Cos A Cos B - Sin A Sin B

To Find:

Which of the given identities are FALSE for acute angle ( 0° < A < 90° )

Solution:

We can simply solve this numerical problem by using the following process.

Let us assume A = 30° for the first 3 identities and substitute in A so that whichever does not stand equal is the FALSE option.

Identity 1:

⇒ ( Sin A + Sec A )² + ( Cos A + Cosec A )² =  ( 1 + Sec A .Cosec A )²

Substituting A = 30° in the above equation

⇒ ( Sin 30° + Sec 30° )² + ( Cos 30° + Cosec 30° )² =  ( 1 + Sec 30° .Cosec 30° )²

Sin 30° = 0.5

Sec 30°= 1.155

Cos 30° = 0.866

Cosec 30° = 2

⇒ ( 0.5 + 1.155 )² + ( 0.866 + 2 )² = ( 1 + ( 1.155*2))²

⇒ ( 1.655 )² + ( 2.866 )² = ( 1 + 2.31 )²

⇒ 2.74 + 8.214 = 10.95

⇒ 10.95 = 10.95

LHS = RHS

∴ Identity 1 stands good for acute angles.

Identity 2:

⇒ ( 1 - Sin A ) / ( 1 + Sin A ) = ( Sec A - Tan A )²

Substitute A = 30°

⇒ ( 1 - Sin 30° ) / ( 1 + Sin 30° ) = ( Sec 30° - Tan 30° )²

Sin 30° = 0.5

Sec 30°= 1.155

Tan 30° = 0.577

⇒ ( 1 - 0.5 ) / ( 1 + 0.5 ) = ( 1.155 - 0.577 )²

⇒ 0.5 / 1.5 = 0.578²

⇒ 0.33 = 0.33

LHS = RHS

Hence Identity 2 stands good for acute angle.

Identity 3:

⇒ ( 1 + Sin A ) / ( 1 - Sin A ) = ( Sec A + Tan A )²

Substitute A = 30°

⇒ ( 1 + Sin 30° ) / ( 1 - Sin 30° ) = ( Sec 30° + Tan 30° )²

Sin 30° = 0.5

Sec 30°= 1.155

Tan 30° = 0.577

⇒ ( 1 + 0.5 ) / ( 1 - 0.5 ) = ( 1.155 + 0.577 )²

⇒ 1.5 / 0.5 = 1.732²

⇒ 3 = 3

LHS = RHS

Hence Identity 3 stands right for acute angles.

Identity 4:

⇒ Cos ( A - B ) = Cos A Cos B - Sin A Sin B

Substitute A = 60° and B = 30°

⇒ Cos ( 60° - 30° ) = Cos 60° Cos 30° - Sin 60° Sin 30°

⇒ Cos ( 30° ) = Cos 60° Cos 30° - Sin 60° Sin 30°

Cos 30° = 0.866

Sin 30° = 0.5

Cos 60° = 0.5

Sin 60° = 0.866

⇒ 0.866 = ( 0.5 * 0.866 ) - ( 0.5 * 0.866 )

⇒ 0.866 = 0

LHS ≠ RHS

Identity 4 does not stand right for the given angles.

Therefore Identity 4 is FALSE for the acute angles.

#SPJ2

Similar questions