Math, asked by kushwahaayush4714, 2 months ago

which of the following is an not perfect square. a)361. b)3481. c)4624. d)8024.​


Answers

Answered by gopalpvr
0

Step-by-step explanation:

a) 361= 19 × 19 is a perfect square number

b) 3481= 59×59 is a perfect square number

c) 4624= 68×68 is a perfect square number

89 × 89 = 7921< 8024< 90 × 90 = 8100

d) 8024 is not a perfect square number

Answered by SachinGupta01
20

\bf \underline{\underline{\maltese\: Solution }}

 \bf (a) \:  \: 361

 \sf First \: of \: all \: we \: have \: to \: find \: prime \: factors \: of \: 361.

 \begin{gathered}\begin{array}{c | c} \underline{19  }&amp;\underline{361} \\ \underline{19}&amp;\underline{19 }\\ &amp;1\end{array}\end{gathered}

 \sf  \implies 361 =  \underbrace{19 \times 19 }

 \sf  Thus, \:  361  \: can  \: be \:  expressed \:  as \:  pair  \: of \:  equal  \: factors.

 \sf \underline{Therefore, \:  361 \:  is \:  a  \: perfect  \: square. }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bf (b) \:  \: 3481

 \sf First \: of \: all \: we \: have \: to \: find \: prime \: factors \: of \: 3481.

 \sf \begin{gathered}\begin{array}{c | c} \underline{59  }&amp;\underline{3481} \\ \underline{59}&amp;\underline{59 }\\ &amp;1\end{array}\end{gathered}

 \sf  \implies 3481 =  \underbrace{59 \times 59 }

 \sf  Thus, \:  3481  \: can  \: be \:  expressed \:  as \:  pair  \: of \:  equal  \: factors.

 \sf \underline{Therefore, \:  3481 \:  is \:  a  \: perfect  \: square. }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bf (c) \:  \: 4624

 \sf First \: of \: all \: we \: have \: to \: find \: prime \: factors \: of \: 4624.

 \sf \begin{gathered}\begin{array}{c | c} \underline{2}&amp;\underline{4624} \\\underline{2}&amp;\underline{2312} \\ \underline{2}&amp;\underline{1156} \\ \underline{2}&amp;\underline{578}   \\  \underline{17}&amp;\underline{289 }\\\underline{17}&amp;\underline{17} \\  &amp;1\end{array}\end{gathered}

 \sf  \implies 4624 =  \underbrace{2 \times 2 } \times \underbrace{2 \times 2} \times \underbrace{17 \times 17 }

 \sf  Thus, \:  4624  \: can  \: be \:  expressed \:  as \:  pair  \: of \:  equal  \: factors.

 \sf \underline{Therefore, \:  4624 \:  is \:  a  \: perfect  \: square. }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bf (d) \:  \: 8024

 \sf First \: of \: all \: we \: have \: to \: find \: prime \: factors \: of \: 8024.

 \sf \begin{gathered}\begin{array}{c | c} \underline{2}&amp;\underline{8024} \\\underline{2}&amp;\underline{4012} \\  \underline{2}&amp;\underline{2006 }\\\underline{1003}&amp;\underline{1003} \\  &amp;1\end{array}\end{gathered}

 \sf  \implies 8024 =  \underbrace{2 \times 2 }  \times   2 \times 1003

 \sf \: Making  \: pairs \:  of \:  equal  \: factors,  \: we \:  find \:  2  \: and  \: 1003 \:  left.

 \sf \underline{Therefore, \:  8024 \:  is \:not \:   a  \: perfect  \: square. }

Similar questions