which of the following is not a factor of x4-4abx2-(a2-b2)2?
snape:
options
Answers
Answered by
1
see the answer and point out answer
Attachments:
Answered by
0
x⁴-4abx²-(a²-b²)²
Let x²= p
p²-4abp -(a²-b²)²=0
On comparing with ax²+ bx+c=0
a= 1, b= -4ab , c = -(a²-b²)²
P = -b ±(√b²-4ac)/2a
[ By quadratic Formula]
p= [-(-4ab) ±√ (-4ab)²- 4×1×-(a²-b²)²]/2×1
p= [4ab±√ (4ab)²+4(a²-b²)²]/2
p= [4ab± 2 √ (4a²b²)+(a²+ b² -2a²b²)]/2
p= [4ab± 2 √ 4a²b² -2a²b²+a²+ b²]/2
p= [4ab± 2 √ 2a²b²+a²+ b²]/2
p= [4ab± 2 √(a²+ b²+2a²b²)]/2
p = 4ab ±2√ (a²+b²)²/2
p = 4ab ±2 (a²+b²)/2
p = 2ab ±(a²+b²)
= 2ab +a²+b², 2ab -(a²+b²)
P= (a+b)², 2ab -a²-b²
P= (a+b)², -(a-b)²
p-(a+b)² , p+(a-b)²
x²-(a+b)² , x²+(a-b)²
(x)²-(a+b)² , x²+(a-b)²
(x-(a+b)), (x+(a+b)) x²+(a-b)²
==================================================================
Hope this will help you....
Let x²= p
p²-4abp -(a²-b²)²=0
On comparing with ax²+ bx+c=0
a= 1, b= -4ab , c = -(a²-b²)²
P = -b ±(√b²-4ac)/2a
[ By quadratic Formula]
p= [-(-4ab) ±√ (-4ab)²- 4×1×-(a²-b²)²]/2×1
p= [4ab±√ (4ab)²+4(a²-b²)²]/2
p= [4ab± 2 √ (4a²b²)+(a²+ b² -2a²b²)]/2
p= [4ab± 2 √ 4a²b² -2a²b²+a²+ b²]/2
p= [4ab± 2 √ 2a²b²+a²+ b²]/2
p= [4ab± 2 √(a²+ b²+2a²b²)]/2
p = 4ab ±2√ (a²+b²)²/2
p = 4ab ±2 (a²+b²)/2
p = 2ab ±(a²+b²)
= 2ab +a²+b², 2ab -(a²+b²)
P= (a+b)², 2ab -a²-b²
P= (a+b)², -(a-b)²
p-(a+b)² , p+(a-b)²
x²-(a+b)² , x²+(a-b)²
(x)²-(a+b)² , x²+(a-b)²
(x-(a+b)), (x+(a+b)) x²+(a-b)²
==================================================================
Hope this will help you....
Similar questions