Math, asked by akshimithu, 10 months ago

Which of the following is not a zero of the polynomial p(x)=x^3+11x^2+36x+36
a) -3
b)-2
c) -6
d)2

Answers

Answered by Anonymous
39

 \huge\bf\underline{Solution:-}

Given :-

  • p(x) = x³ +11x² +36x+36

Putting x = -3

 \small:\implies\rm\:( - 3)  {}^{3}  + 11 \times  { - 3}^{2}   + 36 \times (-3) + 36 \\  :\implies\rm\: - 27  + 11 \times 9  - 108 + 36 \\ :\implies\rm\:  - 135  + 99 + 36 \\ :\implies\rm\: - 135 + 135 \\ :\implies\rm\:0 = 0

Since we get 0

so, -3 is a zero of given polynomial.

Now putting x = -2

 \small:\implies\rm\: { - 2}^{3}  + 11 \times  { - 2}^{2}  + 36 \times ( - 2) + 36   \\ :\implies\rm\: - 8 + 44 - 72 + 36 \\ :\implies\rm\: - 80 + 80  \\ :\implies\rm\:0 = 0

So we get 0

so -2 is a zero of given polynomial.

putting x = -6

\small:\implies\rm\: { - 6}^{3}  + 11 \times  { - 6}^{2}  + 36 \times ( - 6) + 36 \\  \small:\implies\rm\: - 216 + 396 - 216 + 36 \\  \small:\implies\rm\: - 432 + 432 \\   \small:\implies\rm\:0 = 0

so, we get 0 , so -6 is a zero of given polynomial.

Putting x = 2

\small:\implies\rm\: {2}^{3}  + 11  \times {2}^{2}  + 36 \times 2 + 36 \\ \small:\implies\rm\:8 + 44 + 72 + 36  \\ \small:\implies\rm\:162 \neq 0

So, we didn't get 0

So, 2 is not a zero of given polynomial

Then,

option d is correct.

Answered by Anonymous
12

QUESTION :

Which of the following is not a zero of the polynomial p(x)=x^3+11x^2+36x+36

a) -3

b)-2

c) -6

d)2

ANSWER :

Option d)2 is the answer.

please refer to given attachment for explanation.

Attachments:
Similar questions