Math, asked by atiayich, 9 months ago

Which of the following is not an identity? A. Sin2θ + Cos2θ = 1 B. Sin θ= tanθ.cosθ C. 1 + cot2θ= cos2θ D. 1 – sec2θ = tan2θ

Answers

Answered by Swarup1998
2

Incorrect identities: 1+cot^{2}\theta=cos^{2}\theta and 1-sec^{2}\theta=tan^{2}\theta

We take an angle \theta=45^{\circ} to find which of the given relations is not an identity.

A. sin^{2}\theta+cos^{2}\theta=1

When \theta=45^{\circ},

\quad sin^{2}45^{\circ}+cos^{2}45^{\circ}-1

=(\dfrac{1}{\sqrt{2}})^{2}+(\dfrac{1}{\sqrt{2}})^{2}-1

=\dfrac{1}{2}+\dfrac{1}{2}-1

=1-1

=0

\Rightarrow sin^{2}\theta+cos^{2}\theta=1 is correct.

B. sin\theta=tan\theta\:cos\theta

When \theta=45^{\circ},

\quad sin45^{\circ}-tan45^{\circ}\:cos45^{\circ}

=\dfrac{1}{\sqrt{2}}-1.\dfrac{1}{\sqrt{2}}

=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}}

=0

\Rightarrow sin\theta=tan\theta\:cos\theta is correct.

C. 1+cot^{2}\theta=cos^{2}\theta

When \theta=45^{\circ},

\quad 1+cot^{2}45^{\circ}-cos^{2}45^{\circ}

=1+(1)^{2}-(\dfrac{1}{\sqrt{2}})^{2}

=1+1-\dfrac{1}{2}

=\dfrac{3}{2}

\neq 0

\Rightarrow 1+cot^{2}\theta=cos^{2}\theta is incorrect.

D. 1-sec^{2}\theta=tan^{2}\theta

When \theta=45^{\circ},

\quad 1-sec^{2}45^{\circ}-tan^{2}45^{\circ}

=1-(\sqrt{2})^{2}-(1)^{2}

=1-2-1

=-2

\neq 0

\Rightarrow 1-sec^{2}\theta=tan^{2}\theta is incorrect.

Answered by sjohnjoseph33
0

Answer:

Step-by-step explanation:

Similar questions