Which of the following pair of numbers is the solution of the equation 3^x+2 + 3^-x = 10
Answers
Answer:
0 and - 2
Step-by-step explanation:
→ 3^( x + 2 ) + 3^(-x) = 10
→ 3^x. 3^2 + 3^(-x) = 10
→ 3^x. 3^2 + 1/3^x = 10
Let 3^x = a
→ a.3^2 + 1/a = 10
→ 9a + 1/a = 10
→ 9a² + 1 = 10a
→ 9a² - 10a + 1 = 0
→ 9a² - 9a - a + 1 =0
→ 9a( a - 1 ) - ( a - 1 ) = 0
→ ( a - 1 )( 9a - 1 ) = 0
→ a = 1 or a = 1/9
→ 3^x = 1 or 3^x = 1/9
→ 3^x = 3^0 or 3^x = 3^(-2)
→ x = 0 or x = - 2
Answer:
Substituting 3^x = y, we get;
Multiplying by 'y' on b.h.s, we get;
=> 9y(y-1) -1(y-1) = 0
=> (y-1)(9y-1) = 0
=> Now, y-1 = 0 OR 9y-1 = 0
=> y=1 OR y=1/9
Re-substituting y = 3^x, we get;
3^x = 1 OR 3^x = 1/9
3^x = 3^0 OR 3^x = 1/3^2
3^x = 3^0 OR 3^x = 3^(-2)
x = 0 OR x = -2=> [3^x * 3^2] + 1/3^x = 10
=> [3^x * 9] + 1/3^x = 10
Substituting 3^x = y, we get;
=> [y * 9] + 1/y = 10
Multiplying by 'y' on b.h.s, we get;
=> [ y^2 * 9] + 1 = 10y
=> 9y^2 - 10y + 1 = 0
=> 9y^2 - 9y - y + 1 =0
=> 9y(y-1) -1(y-1) = 0
=> (y-1)(9y-1) = 0
=> Now, y-1 = 0 OR 9y-1 = 0
=> y=1 OR y=1/9
Re-substituting y = 3^x, we get;
3^x = 1 OR 3^x = 1/9
3^x = 3^0 OR 3^x = 1/3^2
3^x = 3^0 OR 3^x = 3^(-2)
x = 0 OR x = -2