Which of the following points lies on the circle of radius 10 with centre at (4, -3)?
Answers
Answered by
0
Answer:
The equation is: \frac{(x - 0)^{2} }{10^{2} } + \frac{(y - 0)^{2} }{10^{2} } = 1102(x−0)2+102(y−0)2=1
= \frac{x^{2} }{10^{2} } + \frac{y^{2} }{10^{2} } = 1102x2+102y2=1
A) \frac{(\sqrt{10}) ^{2} }{10^{2} } + \frac{(0)^{2} }{10^{2} } = 1102(10)2+102(0)2=1
⇒ \frac{10}{100}10010 + 0 = 1 FALSE
B) \frac{(0) ^{2} }{10^{2} } + \frac{(2\sqrt{5})^{2} }{10^{2} } = 1102(0)2+102(25)2=1
⇒ 0 + \frac{20}{100}10020 = 1 FALSE
C) \frac{(5\sqrt{2}) ^{2} }{10^{2} } + \frac{(5\sqrt{2})^{2} }{10^{2} } = 1102(52)2+102(52)2=1
⇒ \frac{50}{100}10050 + \frac{50}{100}10050 = 1 TRUE
Step-by-step explanation:
I HOPE IT'S HELP YOU
Similar questions