Math, asked by ak6587278, 9 months ago

Which of the following sets of data make FG parallel AB=14, AF=6, AC=7, AG=3

b) AB=12, FB=3, AC=8, AG=6

c) AB=10, AF=5, AC=20, AG=4

d) AF=6, FB=5, AG=9, GC=8

Answers

Answered by mysticd
3

 \underline{\pink{Converse \:of \: Basic \: Proportionality \: Theorem :}}

If a line divides two sides of a triangle in the same ratio ,then the line is parallel to the third side .

 a) Here ,In \: \triangle ABC ,

 AB = 14, AF = 6 ,AC = 7 AG = 3

 i) \frac{AB}{AF} = \frac{14}{6} = \frac{7}{3}

 ii) \frac{AC}{AG} = \frac{7}{3}

 \frac{AB}{AF} = \frac{AC}{AG}

 \therefore \green { FG /parallel BC }

 b) Here ,In \: \triangle ABC ,

 AB=12, FB=3, AC=8, AG=6

 GC = AC - AG

 = 8 - 6 = 2

 i) \frac{AB}{FB} = \frac{12}{3} = 4

 ii) \frac{AC}{GC} =\frac{ \frac{8}{2} = 4

 \frac{AB}{FB} = \frac{AC}{GC}

 \therefore \green { FG /parallel BC }

 c) Here ,In \: \triangle ABC ,

 AB=10, AF=5, AC=20, AG=4

 i) \frac{AB}{AF} = \frac{10}{5} = 2

 ii) \frac{AC}{AG} = \frac{20}{4} = 5

 \frac{AB}{AF} \neq \frac{AC}{AG}

 \therefore \red { FG \:not \: parallel \:to \:BC }

 d) Here ,In \: \triangle ABC ,

 AF=6, FB=5, AG=9, GC=8

 i) \frac{AF}{FB} = \frac{6}{5}

 ii) \frac{AG}{GC} = \frac{9}{8}

 \frac{AF}{FB} \neq \frac{AG}{GC}

 \therefore \red { FG \:not \: parallel \:to \:BC }

•••♪

Attachments:
Similar questions