Math, asked by samratpatil472, 1 month ago

Which of the following surds is greatest? ³√2 , √3 , ⁶√7 , ⁴√5 *
4 points
³√2
√3
⁴√5
⁶√7

Answers

Answered by mandavirani786
0

Answer:

a

Step-by-step explanation:

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given surds are

\red{\rm :\longmapsto\: \sqrt[3]{2}, \:  \sqrt{3}, \:  \sqrt[6]{7}, \:  \sqrt[4]{5}}

To find which surd is greater, Let we first convert them in to same powers.

Now, let first find the LCM of ( 3, 2, 6, 4 ) = 12

We know,

 \boxed{ \bf{ \:  \sqrt[x]{y}  \: =  \:  \sqrt[xz]{ {y}^{z} }}}

So,

\rm :\longmapsto\: \sqrt[3]{2} =  \sqrt[3 \times 4]{ {2}^{4} } =  \sqrt[12]{16}

\rm :\longmapsto\: \sqrt[2]{3} =  \sqrt[3 \times 6]{ {3}^{6} } =  \sqrt[12]{729}

\rm :\longmapsto\: \sqrt[6]{7} =  \sqrt[2 \times 6]{ {7}^{2} } =  \sqrt[12]{49}

\rm :\longmapsto\: \sqrt[4]{5} =  \sqrt[4 \times 3]{ {5}^{3} } =  \sqrt[12]{125}

So, from these, we concluded that,

\rm :\longmapsto\: \sqrt[12]{729} >  \sqrt[12]{125} >  \sqrt[12]{49} >  \sqrt[12]{16}

\bf\implies \: \sqrt[2]{3} >  \sqrt[4]{5} >  \sqrt[6]{7} >  \sqrt[3]{2}

\bf\implies \: \sqrt{3}  \: is \: greatest

  • Hence, option (2) is correct

Similar questions