Math, asked by dv2425675, 17 days ago

which of the points a(1,3), b(-3,2), c(3,4), and d (4,2) is the farthest to the origin.​

Answers

Answered by chandrakanttirmare94
3

Answer:

c(3,4) is the farthest point from origin

Answered by Manmohan04
3

Given,

\[a\left( {1,3} \right),b\left( { - 3,2} \right),c\left( {3,4} \right),d\left( {4,2} \right)\]

Solution,

Consider the distance between two points \[\left( {{x_1},{y_1}} \right),\left( {{x_2},{y_2}} \right)\] ,

\[ = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \]

Distance between origin O to a.

\[O\left( {0,0} \right),a\left( {1,3} \right)\]

\[\begin{array}{l} = \sqrt {{{\left( {\left( {0 - 1} \right)} \right)}^2} + {{\left( {0 - 3} \right)}^2}} \\ = \sqrt {{1^2} + {3^2}} \\ = \sqrt {10} \,unit\end{array}\]

Distance between origin O to b.

\[\begin{array}{l}O\left( {0,0} \right),b\left( { - 3,2} \right)\\ = \sqrt {{{\left( {\left( {0 + 3} \right)} \right)}^2} + {{\left( {0 - 2} \right)}^2}} \\ = \sqrt {{3^2} + {2^2}} \\ = \sqrt {13} \,unit\end{array}\]

Distance between origin O to c.

\[\begin{array}{l}O\left( {0,0} \right),c\left( {3,4} \right)\\ = \sqrt {{{\left( {\left( {0 - 3} \right)} \right)}^2} + {{\left( {0 - 4} \right)}^2}} \\ = \sqrt {{3^2} + {4^2}} \\ = 5\,unit\end{array}\]

Distance between origin O to d.

\[\begin{array}{l}O\left( {0,0} \right),d\left( {4,2} \right)\\ = \sqrt {{{\left( {\left( {0 - 4} \right)} \right)}^2} + {{\left( {0 - 2} \right)}^2}} \\ = \sqrt {{4^2} + {2^2}} \\ = \sqrt {20} \,unit\end{array}\]

Hence the farthest point is \[c\left( {3,4} \right)\]

Similar questions