Math, asked by aryamadhu4545, 3 months ago

Which of the term of A.P 5,2, -1,........... is -49?

Answers

Answered by akaswan
7

Answer:

a = 5 d= -3 now you can find it is easy now

Step-by-step explanation:

an= a+(n-1)*d

Answered by Anonymous
20

Given

  • A.P = 5, 2, -1, ....

To find

  • Term at which A.P will be -49.

Solution

  • In this question, we have an A.P with

→ First term (a) = 5

→ Common difference (d) = -3

  • We have to find (n) required term.

We know that

\star{\boxed{\boxed{\bf{a_n = a + (n - 1)d}}}}

  • Let the \sf{a_n} be -49.

\tt:\implies\: \: \: \: \: \: \: \: {-49 = 5 + (n - 1)(-3)}

\tt:\implies\: \: \: \: \: \: \: \: {-49 - 5 = (n - 1)(-3)}

\tt:\implies\: \: \: \: \: \: \: \: {-54 = (n - 1)(-3)}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{-54}{-3} = (n - 1)}

\tt:\implies\: \: \: \: \: \: \: \: {n - 1 = 18}

\tt:\implies\: \: \: \: \: \: \: \: {n = 18 + 1}

\tt:\implies\: \: \: \: \: \: \: \: {n = 19}

Hence,

  • 19th term of the given A.P is -49.
Similar questions