Which orbital is most affected by crystal field stabilization energy?
Answers
The Crystal Field Theory (CFT) is a model for the bonding interaction between transition metals and ligands. It describes the effect of the attraction between the positive charge of the metal cation and negative charge on the non-bonding electrons of the ligand. When the ligands approach the central metal ion, the degeneracy of electronic orbital states, usually d or f orbitals, are broken due to the static electric field produced by a surrounding charge distribution. CFT successfully accounts for some magnetic properties, colors, and hydration energies of transition metal complexes, but it does not attempt to describe bonding.
The electrons in the d orbitals of the central metal ion and those in the ligand repel each other due to repulsion between like charges. Therefore, the d electrons closer to the ligands will have a higher energy than those further away, which results in the d orbitals splitting in energy.