Which statement best explains how the residence time of a substance affects the atmosphere?
Answers
Answered by
0
As this unit shows, temperature and moisture levels are major variables shaping Earth's weather patterns. By increasing atmospheric concentrations of greenhouse gases through activities such as burning fossil fuels, humans are changing the planet's radiative balance. This process is altering global temperatures and moisture levels, so we can expect that it will change Earth's weather patterns. One of the key issues in current atmospheric science research is understanding how GHG emissions affect natural cycling of carbon between the atmosphere, oceans, and land. The rate at which land and ocean sinks take up carbon will determine what fraction of man-made CO2 emissions remain in the atmosphere and alter Earth's radiative balance.
Atmospheric levels of CO2, the most important anthropogenic greenhouse gas, are controlled by a dynamic balance among biological and inorganic processes that make up the carbon cycle. These processes operate on very diverse time scales ranging from months to geological epochs. Today, human intervention in the carbon cycle is disturbing this natural balance. As a result, atmospheric CO2 concentrations are rising rapidly and are already significantly higher than any levels that have existed for at least the past 650,000 years.
In recent decades, only about half of the CO2 added to the atmosphere by human activities has stayed in the atmosphere. The rest has been taken up and stored in the oceans and in terrestrial ecosystems. The basic processes through which land and ocean sinks (storage reservoirs) take up carbon are well understood, but there are many questions about how much anthropogenic carbon these sinks can absorb, which sinks are taking up the largest shares, and how sensitive these sinks are to various changes in the environment. These issues are concerns for atmospheric scientists because carbon that cannot be taken up by land and ocean sinks will ultimately end up in the atmosphere. By monitoring atmospheric concentrations of CO2 and other greenhouse gases, scientists are working to understand the operation of natural carbon sinks more accurately
Hope this question's answer are helpful
and press the point of thanks
Atmospheric levels of CO2, the most important anthropogenic greenhouse gas, are controlled by a dynamic balance among biological and inorganic processes that make up the carbon cycle. These processes operate on very diverse time scales ranging from months to geological epochs. Today, human intervention in the carbon cycle is disturbing this natural balance. As a result, atmospheric CO2 concentrations are rising rapidly and are already significantly higher than any levels that have existed for at least the past 650,000 years.
In recent decades, only about half of the CO2 added to the atmosphere by human activities has stayed in the atmosphere. The rest has been taken up and stored in the oceans and in terrestrial ecosystems. The basic processes through which land and ocean sinks (storage reservoirs) take up carbon are well understood, but there are many questions about how much anthropogenic carbon these sinks can absorb, which sinks are taking up the largest shares, and how sensitive these sinks are to various changes in the environment. These issues are concerns for atmospheric scientists because carbon that cannot be taken up by land and ocean sinks will ultimately end up in the atmosphere. By monitoring atmospheric concentrations of CO2 and other greenhouse gases, scientists are working to understand the operation of natural carbon sinks more accurately
Hope this question's answer are helpful
and press the point of thanks
Answered by
0
Answer:
Explanation:
HI how are you?
Similar questions