Math, asked by spiderman31, 10 months ago

which term of A.P 3,15, 27,39..... will be 120 more than it's 21 term.​

Answers

Answered by CrEEpycAmp
149

{\fbox{\boxed {\huge{\rm{\blue{Answer}}}}}}

Step-by-step explanation:

a=3 , d=15-3=12 , n=21

an= a + (n - 1) d

an = 3 + (21 - 1) (12)

an= 3 + (20) (12)

an = 240 + 3

an= 243

an= 243 + 120

an= 363

363= 3 + (n - 1) (12)

363 = 3+ 12n - 12

363 - 3 = 12n - 12

360 + 12 = 12n

372 = 12n

n = 372/12

n = 31

{\boxed{\huge{\green{\mathcal{BeBrainly}}}}}


BrainIyMSDhoni: Good :)
BrainlyConqueror0901: keep it up : )
Answered by Anonymous
216

QUESTION:-

ᴡʜɪᴄʜ ᴛᴇʀᴍ ᴏғ ᴀ.ᴘ 3,15, 27,39..... ᴡɪʟʟ ʙᴇ 120 ᴍᴏʀᴇ ᴛʜᴀɴ ɪᴛ's 21 ᴛᴇʀᴍ.

ANSWER✓

\Large\bold\purple{given,}

 \sf\dashrightarrow a=3

 \sf\dashrightarrow  t_1=3

 \sf\dashrightarrow  t_2=15

 \sf\dashrightarrow  d=t_2 -t_1

 \sf\dashrightarrow  d=15-3=12

 \sf\dashrightarrow  n=21

 \sf\dashrightarrow  term\:of\:A.P\:will\:be\:120\:more\:than\:term\:21th\:term

TO FIND,

 \sf\large\dashrightarrow  the\:value\:of\:n

\Large\underline\bold{SOLUTION,}

 \sf\dashrightarrow to\: understand\:it\:we\:will\:take\:2\:cases

 \sf\therefore in\:case\:1\:we\:will\:find\:t_n\:of\:21st\:term

 \sf\therefore in\:2\:case\:we\:will\:find\:the\:term\:of\:ap\:of\:120\:more\:than\:21st\:term

\sf\large\underline\therefore ATQ...i.e.,.... according\:to\:the\:question

\large {\fbox {CASE:-1}}  \sf\implies t_n\:of\:the\:21st\:term

 \sf\underline\therefore n^{th}\:term\:t_n\:is\:given\:by,

\large{\boxed{\sf{t_n=a+(n-1) \times d}}}

 \sf\implies t_n=3+(21-1) \times 12

 \sf\implies t_n=3+(20) \times 12

 \sf\implies t_n=3+240

 \sf\implies t_n=243

\sf{\boxed{\sf{t_n=243}}}

 \sf\therefore AP\:will\:be\:120\:more\:than\:it's\:21_st\:term

then,

 \sf\therefore AP= 243+120=363

\large {\fbox {CASE:-2}}

\sf\bold\purple{given,}

 \sf\therefore t_n=363

 \sf\therefore a=3

 \sf\therefore d=12

\sf\bold\red{to\:find,}

\sf\implies nth\:term\:of\:the\:t_n\:363

 \sf\underline\therefore n^{th}\:term\:t_n\:is\:given\:by,

\large{\boxed{\sf{t_n=a+(n-1) \times d}}}

 \sf\implies 363=3+(n-1) \times 12

 \sf\implies 363=3+(12n-12)

 \sf\implies 363-3=12n-12

 \sf\implies 360+12=12n

 \sf\implies 372=12n

 \sf\implies \dfrac{372}{12} =n

 \sf\implies  n=\cancel \dfrac{372}{12}

 \sf\implies n=31

\large{\boxed{\sf{n=31}}}

____________________

ADDITIONAL NOTES,

  • those sequences whose terms follow certain pattern are called

progressions

  • there are 4 types of progressions
  1. arithmetic progression (A.P)
  2. geometric progression (G.P.)
  3. harmonic progression (H.P.)
  4. arithmetic-geometric progression(A.G.P)

  • sum of first n terms is given by

 \sf\therefore s_n= \dfrac{n}{2} \bigg[ 2a+(n-1) \times d \bigg]

 \sf\therefore \dfrac{n}{2} \bigg[ a+l \bigg]

  • ARITHMETIC MEAN,

 \sf\therefore A-a=b-A

 \sf\implies 2A=a+b

\large{\boxed{\sf{A= \dfrac{a+b}{2}}}}

____________________


Anonymous: Well done !
Anonymous: Good! ♡
BrainIyMSDhoni: Great :)
BrainlyConqueror0901: outstanding : )
Similar questions