Math, asked by priyanshukashyap694, 11 months ago

Which term of AP 121, 117, 113,.... is its first negative term?​

Answers

Answered by TrickYwriTer
6

Step-by-step explanation:

 \huge \underline{Answer - }

</p><p> \bold{Given -}</p><p> \\ </p><p>AP = 121 , 117 , 113 , ............</p><p> \\ \\ </p><p> \bold{To \:Find -}</p><p> \\ </p><p>First  \: Negative  \: Term </p><p> \\  \\ </p><p> \bold{a = 121}</p><p> \\ </p><p> \bold{d = 117 - 121 = - 4}</p><p> \\  \\ </p><p>For \:  {n}^{th}  \:  term \:  of  \: the  \: AP - </p><p> \\  \\ </p><p> \bold{a_{n} = a + (n-1)d} \\ </p><p> \leadsto121 + (n-1)-4 \\ </p><p> \leadsto 121 + (-4n+4) \\ </p><p> \leadsto121 - 4n + 4 \\ </p><p> \leadsto   \fbox \bold{ a_{n} =  125 - 4n}</p><p> \\  </p><p>Now,  \\ </p><p>For \:  First \:  negative  \: term </p><p> \\ </p><p> \bold{a_{n} &lt; 0} \\ </p><p>It  \: means,  \\ </p><p>125 - 4n &lt; 0 \\ </p><p>125 &lt; 4n \\ </p><p>4n &gt; 125 \\ </p><p>n &gt; \frac{125}{4}  \\ </p><p> \fbox \bold{n &gt; 31.25}</p><p></p><p> \\  \\ </p><p>Hence, </p><p> \\ </p><p> \bold{32 {}^{nd} } \:  term \:   \: of  \: the \:  AP  \: is \:  First \:  Negative  \: Term

Attachments:
Answered by KJB811217
1

Answer:

Refers to the attachment

Attachments:
Similar questions