Math, asked by heartnacker80, 1 year ago

Which term of ap 121,171 ,113 is the first negative term?

Answers

Answered by adikool
11
Given AP is:

121, 117, 113, ................

First term a = 121

Common difference d = 117-121 = -4

Let nth term is the first negative term in AP

Now nth tern in AP = a + (n-1)*d

                              = 121 + (n - 1)*(-4)

                              = 121 - 4n + 4

                              = 125 - 4n

Now, we have to find the suitable value of n so that the value of (125 - 4n) is negative.

=> 125 - 4n < 0

=> 125 < 4n

=> 4n > 125

=> n > 125/4

=> n > 31.25

Since the term can not be in decimal form (term is always taken a positive integer) 

So, n = 32 

Now, by taking value of n = 32, we get

nth term  = 125 - 4*32

              = 125 - 128

              = -3

This is the first negative term in the series.

So, n = 32


plz mark brainliest
Answered by Anonymous
0

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge AP = 121 , 117 \:and\: 113



\bf\huge a = 121 , d =&gt; 117 - 121 = -4




\bf\huge =&gt; a_{n} = a + (n - 1)d



\bf\huge =&gt; 121 - 4n + 4 = 125 - 4n



\bf\huge First\: Negative\: Term



\bf\huge = a_{n} &lt; 0



\bf\huge = 125 - 4 &lt; 0



\bf\huge = 125 &lt; 4n



\bf\huge = \frac{125}{4} &lt; n



\bf\huge = 31 \frac{1}{4} &lt;n



\bf\huge n \:is\: an\:integer\:and\:n &gt;31 \frac{1}{4}



\bf\huge The\:first\:Negative\:Term\:=\:32nd\:term



\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}


Similar questions